IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06088-2.html
   My bibliography  Save this article

Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions

Author

Listed:
  • Qi Wang

    (Renmin University of China)

  • Yuanfeng Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rui Lou

    (Renmin University of China)

  • Zhonghao Liu

    (Chinese Academy of Sciences)

  • Man Li

    (Renmin University of China
    Chinese Academy of Sciences)

  • Yaobo Huang

    (Chinese Academy of Sciences)

  • Dawei Shen

    (Chinese Academy of Sciences)

  • Hongming Weng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Collaborative Innovation Center of Quantum Matter)

  • Shancai Wang

    (Renmin University of China)

  • Hechang Lei

    (Renmin University of China)

Abstract

The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspects in condensed matter physics and has been a controversial topic for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions to Berry curvature around Weyl nodes, possibly leading to a large intrinsic AHE. Here, we report the quite large AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 both theoretically and experimentally, we demonstrate that the intrinsic AHE from the Weyl fermions near the Fermi energy is dominating. The intrinsic anomalous Hall conductivity depends linearly on the magnetization and can be reproduced by theoretical simulation, in which the Weyl nodes monotonically move with the constrained magnetic moment on Co atom.

Suggested Citation

  • Qi Wang & Yuanfeng Xu & Rui Lou & Zhonghao Liu & Man Li & Yaobo Huang & Dawei Shen & Hongming Weng & Shancai Wang & Hechang Lei, 2018. "Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06088-2
    DOI: 10.1038/s41467-018-06088-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06088-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06088-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangang Yang & Xinwei Yi & Zhen Zhao & Yuyang Xie & Taimin Miao & Hailan Luo & Hao Chen & Bo Liang & Wenpei Zhu & Yuhan Ye & Jing-Yang You & Bo Gu & Shenjin Zhang & Fengfeng Zhang & Feng Yang & Zhimi, 2023. "Observation of flat band, Dirac nodal lines and topological surface states in Kagome superconductor CsTi3Bi5," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Resta A. Susilo & Chang Il Kwon & Yoonhan Lee & Nilesh P. Salke & Chandan De & Junho Seo & Beomtak Kang & Russell J. Hemley & Philip Dalladay-Simpson & Zifan Wang & Duck Young Kim & Kyoo Kim & Sang-Wo, 2024. "High-temperature concomitant metal-insulator and spin-reorientation transitions in a compressed nodal-line ferrimagnet Mn3Si2Te6," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Changmin Lee & Praveen Vir & Kaustuv Manna & Chandra Shekhar & J. E. Moore & M. A. Kastner & Claudia Felser & Joseph Orenstein, 2022. "Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Xianyang Lu & Zhiyong Lin & Hanqi Pi & Tan Zhang & Guanqi Li & Yuting Gong & Yu Yan & Xuezhong Ruan & Yao Li & Hui Zhang & Lin Li & Liang He & Jing Wu & Rong Zhang & Hongming Weng & Changgan Zeng & Yo, 2024. "Ultrafast magnetization enhancement via the dynamic spin-filter effect of type-II Weyl nodes in a kagome ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Hangyu Zhou & Manuel dos Santos Dias & Youguang Zhang & Weisheng Zhao & Samir Lounis, 2024. "Kagomerization of transition metal monolayers induced by two-dimensional hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Shiming Lei & Kevin Allen & Jianwei Huang & Jaime M. Moya & Tsz Chun Wu & Brian Casas & Yichen Zhang & Ji Seop Oh & Makoto Hashimoto & Donghui Lu & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick , 2023. "Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Wenbin Wu & Zeping Shi & Mykhaylo Ozerov & Yuhan Du & Yuxiang Wang & Xiao-Sheng Ni & Xianghao Meng & Xiangyu Jiang & Guangyi Wang & Congming Hao & Xinyi Wang & Pengcheng Zhang & Chunhui Pan & Haifeng , 2024. "The discovery of three-dimensional Van Hove singularity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Hasan Siddiquee & Christopher Broyles & Erica Kotta & Shouzheng Liu & Shiyu Peng & Tai Kong & Byungkyun Kang & Qiang Zhu & Yongbin Lee & Liqin Ke & Hongming Weng & Jonathan D. Denlinger & L. Andrew Wr, 2023. "Breakdown of the scaling relation of anomalous Hall effect in Kondo lattice ferromagnet USbTe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Rui Lou & Liqin Zhou & Wenhua Song & Alexander Fedorov & Zhijun Tu & Bei Jiang & Qi Wang & Man Li & Zhonghao Liu & Xuezhi Chen & Oliver Rader & Bernd Büchner & Yujie Sun & Hongming Weng & Hechang Lei , 2024. "Orbital-selective effect of spin reorientation on the Dirac fermions in a non-charge-ordered kagome ferromagnet Fe3Ge," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Li Huang & Xianghua Kong & Qi Zheng & Yuqing Xing & Hui Chen & Yan Li & Zhixin Hu & Shiyu Zhu & Jingsi Qiao & Yu-Yang Zhang & Haixia Cheng & Zhihai Cheng & Xianggang Qiu & Enke Liu & Hechang Lei & Xia, 2023. "Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06088-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.