IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36221-9.html
   My bibliography  Save this article

Breakdown of the scaling relation of anomalous Hall effect in Kondo lattice ferromagnet USbTe

Author

Listed:
  • Hasan Siddiquee

    (Washington University in St. Louis)

  • Christopher Broyles

    (Washington University in St. Louis)

  • Erica Kotta

    (New York University)

  • Shouzheng Liu

    (New York University)

  • Shiyu Peng

    (Chinese Academy of Sciences)

  • Tai Kong

    (University of Arizona)

  • Byungkyun Kang

    (University of Nevada)

  • Qiang Zhu

    (University of Nevada)

  • Yongbin Lee

    (Ames lab)

  • Liqin Ke

    (Ames lab)

  • Hongming Weng

    (Chinese Academy of Sciences)

  • Jonathan D. Denlinger

    (Lawrence Berkeley National Laboratory)

  • L. Andrew Wray

    (New York University)

  • Sheng Ran

    (Washington University in St. Louis)

Abstract

The interaction between strong correlation and Berry curvature is an open territory of in the field of quantum materials. Here we report large anomalous Hall conductivity in a Kondo lattice ferromagnet USbTe which is dominated by intrinsic Berry curvature at low temperatures. However, the Berry curvature induced anomalous Hall effect does not follow the scaling relation derived from Fermi liquid theory. The onset of the Berry curvature contribution coincides with the Kondo coherent temperature. Combined with ARPES measurement and DMFT calculations, this strongly indicates that Berry curvature is hosted by the flat bands induced by Kondo hybridization at the Fermi level. Our results demonstrate that the Kondo coherence of the flat bands has a dramatic influence on the low temperature physical properties associated with the Berry curvature, calling for new theories of scaling relations of anomalous Hall effect to account for the interaction between strong correlation and Berry curvature.

Suggested Citation

  • Hasan Siddiquee & Christopher Broyles & Erica Kotta & Shouzheng Liu & Shiyu Peng & Tai Kong & Byungkyun Kang & Qiang Zhu & Yongbin Lee & Liqin Ke & Hongming Weng & Jonathan D. Denlinger & L. Andrew Wr, 2023. "Breakdown of the scaling relation of anomalous Hall effect in Kondo lattice ferromagnet USbTe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36221-9
    DOI: 10.1038/s41467-023-36221-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36221-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36221-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peigang Li & Jahyun Koo & Wei Ning & Jinguo Li & Leixin Miao & Lujin Min & Yanglin Zhu & Yu Wang & Nasim Alem & Chao-Xing Liu & Zhiqiang Mao & Binghai Yan, 2020. "Author Correction: Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    2. Qi Wang & Yuanfeng Xu & Rui Lou & Zhonghao Liu & Man Li & Yaobo Huang & Dawei Shen & Hongming Weng & Shancai Wang & Hechang Lei, 2018. "Author Correction: Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    3. Peigang Li & Jahyun Koo & Wei Ning & Jinguo Li & Leixin Miao & Lujin Min & Yanglin Zhu & Yu Wang & Nasim Alem & Chao-Xing Liu & Zhiqiang Mao & Binghai Yan, 2020. "Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Lin Miao & Rourav Basak & Sheng Ran & Yishuai Xu & Erica Kotta & Haowei He & Jonathan D. Denlinger & Yi-De Chuang & Y. Zhao & Z. Xu & J. W. Lynn & J. R. Jeffries & S. R. Saha & Ioannis Giannakis & Peg, 2019. "High temperature singlet-based magnetism from Hund’s rule correlations," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Qi Wang & Yuanfeng Xu & Rui Lou & Zhonghao Liu & Man Li & Yaobo Huang & Dawei Shen & Hongming Weng & Shancai Wang & Hechang Lei, 2018. "Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbin Wu & Zeping Shi & Mykhaylo Ozerov & Yuhan Du & Yuxiang Wang & Xiao-Sheng Ni & Xianghao Meng & Xiangyu Jiang & Guangyi Wang & Congming Hao & Xinyi Wang & Pengcheng Zhang & Chunhui Pan & Haifeng , 2024. "The discovery of three-dimensional Van Hove singularity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Resta A. Susilo & Chang Il Kwon & Yoonhan Lee & Nilesh P. Salke & Chandan De & Junho Seo & Beomtak Kang & Russell J. Hemley & Philip Dalladay-Simpson & Zifan Wang & Duck Young Kim & Kyoo Kim & Sang-Wo, 2024. "High-temperature concomitant metal-insulator and spin-reorientation transitions in a compressed nodal-line ferrimagnet Mn3Si2Te6," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Shiming Lei & Kevin Allen & Jianwei Huang & Jaime M. Moya & Tsz Chun Wu & Brian Casas & Yichen Zhang & Ji Seop Oh & Makoto Hashimoto & Donghui Lu & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick , 2023. "Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xianyang Lu & Zhiyong Lin & Hanqi Pi & Tan Zhang & Guanqi Li & Yuting Gong & Yu Yan & Xuezhong Ruan & Yao Li & Hui Zhang & Lin Li & Liang He & Jing Wu & Rong Zhang & Hongming Weng & Changgan Zeng & Yo, 2024. "Ultrafast magnetization enhancement via the dynamic spin-filter effect of type-II Weyl nodes in a kagome ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Li Huang & Xianghua Kong & Qi Zheng & Yuqing Xing & Hui Chen & Yan Li & Zhixin Hu & Shiyu Zhu & Jingsi Qiao & Yu-Yang Zhang & Haixia Cheng & Zhihai Cheng & Xianggang Qiu & Enke Liu & Hechang Lei & Xia, 2023. "Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Jiangang Yang & Xinwei Yi & Zhen Zhao & Yuyang Xie & Taimin Miao & Hailan Luo & Hao Chen & Bo Liang & Wenpei Zhu & Yuhan Ye & Jing-Yang You & Bo Gu & Shenjin Zhang & Fengfeng Zhang & Feng Yang & Zhimi, 2023. "Observation of flat band, Dirac nodal lines and topological surface states in Kagome superconductor CsTi3Bi5," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Heda Zhang & Jahyun Koo & Chunqiang Xu & Milos Sretenovic & Binghai Yan & Xianglin Ke, 2022. "Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Hangyu Zhou & Manuel dos Santos Dias & Youguang Zhang & Weisheng Zhao & Samir Lounis, 2024. "Kagomerization of transition metal monolayers induced by two-dimensional hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Changmin Lee & Praveen Vir & Kaustuv Manna & Chandra Shekhar & J. E. Moore & M. A. Kastner & Claudia Felser & Joseph Orenstein, 2022. "Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36221-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.