IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46540-0.html
   My bibliography  Save this article

Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells

Author

Listed:
  • Christine Bangert

    (Medical University of Vienna)

  • Natalia Alkon

    (Medical University of Vienna)

  • Sumanth Chennareddy

    (Icahn School of Medicine at Mount Sinai)

  • Tamara Arnoldner

    (Medical University of Vienna)

  • Jasmine P. Levine

    (Icahn School of Medicine at Mount Sinai
    New York Medical College)

  • Magdalena Pilz

    (Medical University of Vienna)

  • Marco A. Medjimorec

    (Medical University of Vienna)

  • John Ruggiero

    (Icahn School of Medicine at Mount Sinai)

  • Emry R. Cohenour

    (Icahn School of Medicine at Mount Sinai)

  • Constanze Jonak

    (Medical University of Vienna)

  • William Damsky

    (Yale School of Medicine)

  • Johannes Griss

    (Medical University of Vienna)

  • Patrick M. Brunner

    (Icahn School of Medicine at Mount Sinai)

Abstract

Dupilumab, an IL4R-blocking antibody, has shown clinical efficacy for atopic dermatitis (AD) treatment. In addition to conjunctivitis/blepharitis, the de novo appearance of head/neck dermatitis is now recognized as a distinct side effect, occurring in up to 10% of patients. Histopathological features distinct from AD suggest a drug effect, but exact underlying mechanisms remain unknown. We profiled punch biopsies from dupilumab-associated head and neck dermatitis (DAHND) by using single-cell RNA sequencing and compared data with untreated AD and healthy control skin. We show that dupilumab treatment was accompanied by normalization of IL-4/IL-13 downstream activity markers such as CCL13, CCL17, CCL18 and CCL26. By contrast, we found strong increases in type 22-associated markers (IL22, AHR) especially in oligoclonally expanded T cells, accompanied by enhanced keratinocyte activation and IL-22 receptor upregulation. Taken together, we demonstrate that dupilumab effectively dampens conventional type 2 inflammation in DAHND lesions, with concomitant hyperactivation of IL22-associated responses.

Suggested Citation

  • Christine Bangert & Natalia Alkon & Sumanth Chennareddy & Tamara Arnoldner & Jasmine P. Levine & Magdalena Pilz & Marco A. Medjimorec & John Ruggiero & Emry R. Cohenour & Constanze Jonak & William Dam, 2024. "Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46540-0
    DOI: 10.1038/s41467-024-46540-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46540-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46540-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keisha Findley & Julia Oh & Joy Yang & Sean Conlan & Clayton Deming & Jennifer A. Meyer & Deborah Schoenfeld & Effie Nomicos & Morgan Park & Heidi H. Kong & Julia A. Segre, 2013. "Topographic diversity of fungal and bacterial communities in human skin," Nature, Nature, vol. 498(7454), pages 367-370, June.
    2. A. Schäbitz & C. Hillig & M. Mubarak & M. Jargosch & A. Farnoud & E. Scala & N. Kurzen & A. C. Pilz & N. Bhalla & J. Thomas & M. Stahle & T. Biedermann & C. B. Schmidt-Weber & F. Theis & N. Garzorz-St, 2022. "Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Cheng-Cheng Deng & Yong-Fei Hu & Ding-Heng Zhu & Qing Cheng & Jing-Jing Gu & Qing-Lan Feng & Li-Xue Zhang & Ying-Ping Xu & Dong Wang & Zhili Rong & Bin Yang, 2021. "Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LiangYu Zhao & Sha Han & HengChuan Su & JianYing Li & ErLei Zhi & Peng Li & ChenCheng Yao & RuHui Tian & HuiXing Chen & HuiRong Chen & JiaQiang Luo & ChenKun Shi & ZhiYong Ji & JianLin Hu & Gang Wu & , 2022. "Single-cell transcriptome atlas of the human corpus cavernosum," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Meiling Zheng & Zhi Hu & Xiaole Mei & Lianlian Ouyang & Yang Song & Wenhui Zhou & Yi Kong & Ruifang Wu & Shijia Rao & Hai Long & Wei Shi & Hui Jing & Shuang Lu & Haijing Wu & Sujie Jia & Qianjin Lu & , 2022. "Single-cell sequencing shows cellular heterogeneity of cutaneous lesions in lupus erythematosus," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Paula Punzon-Jimenez & Alba Machado-Lopez & Raul Perez-Moraga & Jaime Llera-Oyola & Daniela Grases & Marta Galvez-Viedma & Mustafa Sibai & Elena Satorres-Perez & Susana Lopez-Agullo & Rafael Badenes &, 2024. "Effect of aging on the human myometrium at single-cell resolution," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Sabrina Schütz & Llorenç Solé-Boldo & Carlota Lucena-Porcel & Jochen Hoffmann & Alexander Brobeil & Anke S. Lonsdorf & Manuel Rodríguez-Paredes & Frank Lyko, 2023. "Functionally distinct cancer-associated fibroblast subpopulations establish a tumor promoting environment in squamous cell carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Durba Pal & Subhadip Ghatak & Kanhaiya Singh & Ahmed Safwat Abouhashem & Manishekhar Kumar & Mohamed S El Masry & Sujit K. Mohanty & Ravichand Palakurti & Yashika Rustagi & Saba Tabasum & Dolly K. Kho, 2023. "Identification of a physiologic vasculogenic fibroblast state to achieve tissue repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Wilken Boie & Markus Schemmel & Wanzhi Ye & Mario Hasler & Melanie Goll & Joseph-Alexander Verreet & Daguang Cai, 2024. "An assessment of the species diversity and disease potential of Pythium communities in Europe," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Anissa Fries & Fanny Saidoune & François Kuonen & Isabelle Dupanloup & Nadine Fournier & Ana Cristina Guerra de Souza & Muzlifah Haniffa & Feiyang Ma & Johann E. Gudjonsson & Lennart Roesner & Yang Li, 2023. "Differentiation of IL-26+ TH17 intermediates into IL-17A producers via epithelial crosstalk in psoriasis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Xiaojie Cai & Maoying Han & Fangzhou Lou & Yang Sun & Qianqian Yin & Libo Sun & Zhikai Wang & Xiangxiao Li & Hong Zhou & Zhenyao Xu & Hong Wang & Siyu Deng & Xichen Zheng & Taiyu Zhang & Qun Li & Bin , 2023. "Tenascin C+ papillary fibroblasts facilitate neuro-immune interaction in a mouse model of psoriasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46540-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.