IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52761-0.html
   My bibliography  Save this article

An assessment of the species diversity and disease potential of Pythium communities in Europe

Author

Listed:
  • Wilken Boie

    (Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9)

  • Markus Schemmel

    (Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9)

  • Wanzhi Ye

    (Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9)

  • Mario Hasler

    (Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9)

  • Melanie Goll

    (Lindleystraße 8 D)

  • Joseph-Alexander Verreet

    (Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9)

  • Daguang Cai

    (Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9)

Abstract

Pythium sensu lato (s.l.) is a genus of parasitic oomycetes that poses a serious threat to agricultural production worldwide, but their severity is often neglected because little knowledge about them is available. Using an internal transcribed spacer (ITS) amplicon-based-metagenomics approach, we investigate the occurrence, abundance, and diversity of Pythium spp. s.l. in 127 corn fields of 11 European countries from the years 2019 to 2021. We also identify 73 species, with up to 20 species in a single soil sample, and the prevalent species, which show high species diversity, varying disease potential, and are widespread in most countries. Further, we show species-species co-occurrence patterns considering all detected species and link species abundance to soil parameter using the LUCAS topsoil dataset. Infection experiments with recovered isolates show that Pythium s.l. differ in disease potential, and that effective interference with plant hormone networks suppressing JA (jasmonate)-mediated defenses is an essential component of the virulence mechanism of Pythium s.l. species. This study provides a valuable dataset that enables deep insights into the structure and species diversity of Pythium s.l. communities in European corn fields and knowledge for better understanding plant-Pythium interactions, facilitating the development of an effective strategy to cope with this pathogen.

Suggested Citation

  • Wilken Boie & Markus Schemmel & Wanzhi Ye & Mario Hasler & Melanie Goll & Joseph-Alexander Verreet & Daguang Cai, 2024. "An assessment of the species diversity and disease potential of Pythium communities in Europe," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52761-0
    DOI: 10.1038/s41467-024-52761-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52761-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52761-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Lijing Liu & Fathi-Mohamed Sonbol & Bethany Huot & Yangnan Gu & John Withers & Musoki Mwimba & Jian Yao & Sheng Yang He & Xinnian Dong, 2016. "Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    3. Keisha Findley & Julia Oh & Joy Yang & Sean Conlan & Clayton Deming & Jennifer A. Meyer & Deborah Schoenfeld & Effie Nomicos & Morgan Park & Heidi H. Kong & Julia A. Segre, 2013. "Topographic diversity of fungal and bacterial communities in human skin," Nature, Nature, vol. 498(7454), pages 367-370, June.
    4. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Publisher Correction: Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Esther Álvarez & Verónica Andrea El Mujtar & Joana Falcão Salles & Xiu Jia & Elisa Castán & Andrea Gabriela Cardozo & Pablo Adrián Tittonell, 2024. "Micro-Environmental Variation in Soil Microbial Biodiversity in Forest Frontier Ecosystems—Implications for Sustainability Assessments," Sustainability, MDPI, vol. 16(3), pages 1-26, February.
    2. Zi-Teng Liu & Rui-Ao Ma & Dong Zhu & Konstantinos T. Konstantinidis & Yong-Guan Zhu & Si-Yu Zhang, 2024. "Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Samiran Banerjee & Cheng Zhao & Gina Garland & Anna Edlinger & Pablo García-Palacios & Sana Romdhane & Florine Degrune & David S. Pescador & Chantal Herzog & Lennel A. Camuy-Velez & Jordi Bascompte & , 2024. "Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ziheng Peng & Xun Qian & Yu Liu & Xiaomeng Li & Hang Gao & Yining An & Jiejun Qi & Lan Jiang & Yiran Zhang & Shi Chen & Haibo Pan & Beibei Chen & Chunling Liang & Marcel G. A. Heijden & Gehong Wei & S, 2024. "Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Vieira, Mário & Macedo, Ana & Alvarenga, António & Lafoz, Marcos & Villalba, Isabel & Blanco, Marcos & Rojas, Rodrigo & Romero-Filgueira, Alejandro & García-Mendoza, Adriana & Santos-Herran, Miguel & , 2024. "What future for marine renewable energy in Portugal and Spain up to 2030? Forecasting plausible scenarios using general morphological analysis and clustering techniques," Energy Policy, Elsevier, vol. 184(C).
    6. Jinping Zou & Xinlin Chen & Chenxu Liu & Mingyue Guo & Mukesh Kumar Kanwar & Zhenyu Qi & Ping Yang & Guanghui Wang & Yan Bao & Diane C. Bassham & Jingquan Yu & Jie Zhou, 2023. "Autophagy promotes jasmonate-mediated defense against nematodes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Hehong Zhang & Fengmin Wang & Weiqi Song & Zihang Yang & Lulu Li & Qiang Ma & Xiaoxiang Tan & Zhongyan Wei & Yanjun Li & Junmin Li & Fei Yan & Jianping Chen & Zongtao Sun, 2023. "Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Christine Bangert & Natalia Alkon & Sumanth Chennareddy & Tamara Arnoldner & Jasmine P. Levine & Magdalena Pilz & Marco A. Medjimorec & John Ruggiero & Emry R. Cohenour & Constanze Jonak & William Dam, 2024. "Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Varga, György & Gresina, Fruzsina & Szeberényi, József & Gelencsér, András & Rostási, Ágnes, 2024. "Effect of Saharan dust episodes on the accuracy of photovoltaic energy production forecast in Hungary (Central Europe)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    10. Yanez-Rosales, Pablo & Río-Gamero, B. Del & Schallenberg-Rodríguez, Julieta, 2024. "Rationale for selecting the most suitable areas for offshore wind energy farms in isolated island systems. Case study: Canary Islands," Energy, Elsevier, vol. 307(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52761-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.