IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37798-x.html
   My bibliography  Save this article

Tenascin C+ papillary fibroblasts facilitate neuro-immune interaction in a mouse model of psoriasis

Author

Listed:
  • Xiaojie Cai

    (Shanghai Jiao Tong University School of Medicine)

  • Maoying Han

    (University of Chinese Academy of Sciences)

  • Fangzhou Lou

    (Shanghai Jiao Tong University School of Medicine)

  • Yang Sun

    (Shanghai Jiao Tong University School of Medicine)

  • Qianqian Yin

    (Shanghai Jiao Tong University School of Medicine)

  • Libo Sun

    (Shanghai Jiao Tong University School of Medicine)

  • Zhikai Wang

    (Shanghai Jiao Tong University School of Medicine)

  • Xiangxiao Li

    (Shanghai Jiao Tong University School of Medicine)

  • Hong Zhou

    (Shanghai Jiao Tong University School of Medicine)

  • Zhenyao Xu

    (Shanghai Jiao Tong University School of Medicine)

  • Hong Wang

    (Shanghai Jiao Tong University School of Medicine)

  • Siyu Deng

    (Shanghai Jiao Tong University School of Medicine)

  • Xichen Zheng

    (Shanghai Jiao Tong University School of Medicine)

  • Taiyu Zhang

    (Shanghai Jiao Tong University School of Medicine)

  • Qun Li

    (Shanghai Jiao Tong University School of Medicine)

  • Bin Zhou

    (University of Chinese Academy of Sciences)

  • Honglin Wang

    (Shanghai Jiao Tong University School of Medicine)

Abstract

Dermal fibroblasts and cutaneous nerves are important players in skin diseases, while their reciprocal roles during skin inflammation have not been characterized. Here we identify an inflammation-induced subset of papillary fibroblasts that promotes aberrant neurite outgrowth and psoriasiform skin inflammation by secreting the extracellular matrix protein tenascin-C (TNC). Single-cell analysis of fibroblast lineages reveals a Tnc+ papillary fibroblast subset with pro-axonogenesis and neuro-regulation transcriptomic hallmarks. TNC overexpression in fibroblasts boosts neurite outgrowth in co-cultured neurons, while fibroblast-specific TNC ablation suppresses hyperinnervation and alleviates skin inflammation in male mice modeling psoriasis. Dermal γδT cells, the main producers of type 17 pathogenic cytokines, frequently contact nerve fibers in mouse psoriasiform lesions and are likely modulated by postsynaptic signals. Overall, our results highlight the role of an inflammation-responsive fibroblast subset in facilitating neuro-immune synapse formation and suggest potential avenues for future therapeutic research.

Suggested Citation

  • Xiaojie Cai & Maoying Han & Fangzhou Lou & Yang Sun & Qianqian Yin & Libo Sun & Zhikai Wang & Xiangxiao Li & Hong Zhou & Zhenyao Xu & Hong Wang & Siyu Deng & Xichen Zheng & Taiyu Zhang & Qun Li & Bin , 2023. "Tenascin C+ papillary fibroblasts facilitate neuro-immune interaction in a mouse model of psoriasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37798-x
    DOI: 10.1038/s41467-023-37798-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37798-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37798-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ellen A. Lumpkin & Michael J. Caterina, 2007. "Mechanisms of sensory transduction in the skin," Nature, Nature, vol. 445(7130), pages 858-865, February.
    2. Lorena Zuliani-Alvarez & Anna M. Marzeda & Claire Deligne & Anja Schwenzer & Fiona E. McCann & Brian D. Marsden & Anna M. Piccinini & Kim S. Midwood, 2017. "Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    3. Yingyao Zhou & Bin Zhou & Lars Pache & Max Chang & Alireza Hadj Khodabakhshi & Olga Tanaseichuk & Christopher Benner & Sumit K. Chanda, 2019. "Metascape provides a biologist-oriented resource for the analysis of systems-level datasets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. R. Jeroen Pasterkamp & Jacques J. Peschon & Melanie K. Spriggs & Alex L. Kolodkin, 2003. "Semaphorin 7A promotes axon outgrowth through integrins and MAPKs," Nature, Nature, vol. 424(6947), pages 398-405, July.
    5. Swati Bhattacharyya & Wenxia Wang & Luisa Morales-Nebreda & Gang Feng & Minghua Wu & Xiaodong Zhou & Robert Lafyatis & Jungwha Lee & Monique Hinchcliff & Carol Feghali-Bostwick & Katja Lakota & G. R. , 2016. "Tenascin-C drives persistence of organ fibrosis," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    6. Ryan R. Driskell & Beate M. Lichtenberger & Esther Hoste & Kai Kretzschmar & Ben D. Simons & Marika Charalambous & Sacri R. Ferron & Yann Herault & Guillaume Pavlovic & Anne C. Ferguson-Smith & Fiona , 2013. "Distinct fibroblast lineages determine dermal architecture in skin development and repair," Nature, Nature, vol. 504(7479), pages 277-281, December.
    7. Cheng-Cheng Deng & Yong-Fei Hu & Ding-Heng Zhu & Qing Cheng & Jing-Jing Gu & Qing-Lan Feng & Li-Xue Zhang & Ying-Ping Xu & Dong Wang & Zhili Rong & Bin Yang, 2021. "Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Zijian Xu & Daoming Chen & Yucheng Hu & Kaiju Jiang & Huanwei Huang & Yingxue Du & Wenbo Wu & Jiawen Wang & Jianhua Sui & Wenhui Wang & Long Zhang & Shuli Li & Chunying Li & Yong Yang & Jianmin Chang , 2022. "Anatomically distinct fibroblast subsets determine skin autoimmune patterns," Nature, Nature, vol. 601(7891), pages 118-124, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yasuhiko Haga & Yoshitaka Sakamoto & Keiko Kajiya & Hitomi Kawai & Miho Oka & Noriko Motoi & Masayuki Shirasawa & Masaya Yotsukura & Shun-Ichi Watanabe & Miyuki Arai & Junko Zenkoh & Kouya Shiraishi &, 2023. "Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    5. Ryan J. Geusz & Allen Wang & Dieter K. Lam & Nicholas K. Vinckier & Konstantinos-Dionysios Alysandratos & David A. Roberts & Jinzhao Wang & Samy Kefalopoulou & Araceli Ramirez & Yunjiang Qiu & Joshua , 2021. "Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    6. LiangYu Zhao & Sha Han & HengChuan Su & JianYing Li & ErLei Zhi & Peng Li & ChenCheng Yao & RuHui Tian & HuiXing Chen & HuiRong Chen & JiaQiang Luo & ChenKun Shi & ZhiYong Ji & JianLin Hu & Gang Wu & , 2022. "Single-cell transcriptome atlas of the human corpus cavernosum," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Aftab Nadeem & Athar Alam & Eric Toh & Si Lhyam Myint & Zia ur Rehman & Tao Liu & Marta Bally & Anna Arnqvist & Hui Wang & Jun Zhu & Karina Persson & Bernt Eric Uhlin & Sun Nyunt Wai, 2021. "Phosphatidic acid-mediated binding and mammalian cell internalization of the Vibrio cholerae cytotoxin MakA," PLOS Pathogens, Public Library of Science, vol. 17(3), pages 1-34, March.
    9. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Ramachandran Prakasam & Angela Bonadiman & Roberta Andreotti & Emanuela Zuccaro & Davide Dalfovo & Caterina Marchioretti & Debasmita Tripathy & Gianluca Petris & Eric N. Anderson & Alice Migazzi & Lau, 2023. "LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    11. Li Guo & Cheng Hu & Yang Liu & Xiaoyu Chen & Deli Song & Runling Shen & Zhanzhen Liu & Xudong Jia & Qinfen Zhang & Yuanzhu Gao & Zhezhi Deng & Tao Zuo & Jun Hu & Wenbo Zhu & Jing Cai & Guangmei Yan & , 2023. "Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Mijeong Kim & Yu Jin Jang & Muyoung Lee & Qingqing Guo & Albert J. Son & Nikita A. Kakkad & Abigail B. Roland & Bum-Kyu Lee & Jonghwan Kim, 2024. "The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Alejandro Gomez Toledo & Eleni Bratanis & Erika Velásquez & Sounak Chowdhury & Berit Olofsson & James T. Sorrentino & Christofer Karlsson & Nathan E. Lewis & Jeffrey D. Esko & Mattias Collin & Oonagh , 2023. "Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    15. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Ankur Chakravarthy & Ian Reddin & Stephen Henderson & Cindy Dong & Nerissa Kirkwood & Maxmilan Jeyakumar & Daniela Rothschild Rodriguez & Natalia Gonzalez Martinez & Jacqueline McDermott & Xiaoping Su, 2022. "Integrated analysis of cervical squamous cell carcinoma cohorts from three continents reveals conserved subtypes of prognostic significance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Thomas L. Maurissen & Alena J. Spielmann & Gabriella Schellenberg & Marc Bickle & Jose Ricardo Vieira & Si Ying Lai & Georgios Pavlou & Sascha Fauser & Peter D. Westenskow & Roger D. Kamm & Héloïse Ra, 2024. "Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    20. Xiwen Xiong & Chenyan Yang & Wei-Qi He & Jiahui Yu & Yue Xin & Xinge Zhang & Rong Huang & Honghui Ma & Shaofang Xu & Zun Li & Jie Ma & Lin Xu & Qunyi Wang & Kaiqun Ren & Xiaoli S. Wu & Christopher R. , 2022. "Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37798-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.