A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-019-12510-0
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qiyou Wang & Kang Liu & Kangman Hu & Chao Cai & Huangjingwei Li & Hongmei Li & Matias Herran & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Junwei Fu & Shiguo Zhang & Ying Liang & Emiliano Cortés & Min Li, 2022. "Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Yu Zhang & Long-Zhang Dong & Shan Li & Xin Huang & Jia-Nan Chang & Jian-Hui Wang & Jie Zhou & Shun-Li Li & Ya-Qian Lan, 2021. "Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Dong Cao & Haoxiang Xu & Hongliang Li & Chen Feng & Jie Zeng & Daojian Cheng, 2022. "Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12510-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.