IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14675.html
   My bibliography  Save this article

Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

Author

Listed:
  • Xing Zhang

    (South University of Science and Technology of China)

  • Zishan Wu

    (Yale University
    Energy Sciences Institute, Yale University)

  • Xiao Zhang

    (South University of Science and Technology of China)

  • Liewu Li

    (South University of Science and Technology of China)

  • Yanyan Li

    (South University of Science and Technology of China)

  • Haomin Xu

    (South University of Science and Technology of China)

  • Xiaoxiao Li

    (South University of Science and Technology of China)

  • Xiaolu Yu

    (South University of Science and Technology of China)

  • Zisheng Zhang

    (South University of Science and Technology of China)

  • Yongye Liang

    (South University of Science and Technology of China)

  • Hailiang Wang

    (Yale University
    Energy Sciences Institute, Yale University)

Abstract

Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution.

Suggested Citation

  • Xing Zhang & Zishan Wu & Xiao Zhang & Liewu Li & Yanyan Li & Haomin Xu & Xiaoxiao Li & Xiaolu Yu & Zisheng Zhang & Yongye Liang & Hailiang Wang, 2017. "Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14675
    DOI: 10.1038/ncomms14675
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14675
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monika Rdest & Dawid Janas, 2021. "Carbon Nanotube Films for Energy Applications," Energies, MDPI, vol. 14(7), pages 1-27, March.
    2. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Huihui Zhang & Chang Xu & Xiaowen Zhan & Yu Yu & Kaifu Zhang & Qiquan Luo & Shan Gao & Jinlong Yang & Yi Xie, 2022. "Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    6. Jie-Wei Chen & Zisheng Zhang & Hui-Min Yan & Guang-Jie Xia & Hao Cao & Yang-Gang Wang, 2022. "Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.