IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04845-x.html
   My bibliography  Save this article

Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation

Author

Listed:
  • Shubo Tian

    (Tsinghua University)

  • Qiang Fu

    (Humboldt-Universität zu Berlin
    Shandong University)

  • Wenxing Chen

    (Tsinghua University
    Beijing Institute of Technology)

  • Quanchen Feng

    (Tsinghua University)

  • Zheng Chen

    (Tsinghua University)

  • Jian Zhang

    (Tsinghua University)

  • Weng-Chon Cheong

    (Tsinghua University)

  • Rong Yu

    (Tsinghua University)

  • Lin Gu

    (Chinese Academy of Sciences)

  • Juncai Dong

    (Chinese Academy of Sciences)

  • Jun Luo

    (Tianjin University of Technology)

  • Chen Chen

    (Tsinghua University)

  • Qing Peng

    (Tsinghua University)

  • Claudia Draxl

    (Humboldt-Universität zu Berlin)

  • Dingsheng Wang

    (Tsinghua University)

  • Yadong Li

    (Tsinghua University)

Abstract

Sub-nano metal clusters often exhibit unique and unexpected properties, which make them particularly attractive as catalysts. Herein, we report a “precursor-preselected” wet-chemistry strategy to synthesize highly dispersed Fe2 clusters that are supported on mesoporous carbon nitride (mpg-C3N4). The obtained Fe2/mpg-C3N4 sample exhibits superior catalytic performance for the epoxidation of trans-stilbene to trans-stilbene oxide, showing outstanding selectivity of 93% at high conversion of 91%. Molecular oxygen is the only oxidant and no aldehyde is used as co-reagent. Under the same condition, by contrast, iron porphyrin, single-atom Fe, and small Fe nanoparticles (ca. 3 nm) are nearly reactively inert. First-principles calculations reveal that the unique reactivity of the Fe2 clusters originates from the formation of active oxygen species. The general applicability of the synthesis approach is further demonstrated by producing other diatomic clusters like Pd2 and Ir2, which lays the foundation for discovering diatomic cluster catalysts.

Suggested Citation

  • Shubo Tian & Qiang Fu & Wenxing Chen & Quanchen Feng & Zheng Chen & Jian Zhang & Weng-Chon Cheong & Rong Yu & Lin Gu & Juncai Dong & Jun Luo & Chen Chen & Qing Peng & Claudia Draxl & Dingsheng Wang & , 2018. "Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04845-x
    DOI: 10.1038/s41467-018-04845-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04845-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04845-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanping Long & Ling Li & Tao Xu & Xizheng Wu & Yun Gao & Jianbo Huang & Chao He & Tian Ma & Lang Ma & Chong Cheng & Changsheng Zhao, 2021. "Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Shujuan Liu & Teng Li & Feng Shi & Haiying Ma & Bin Wang & Xingchao Dai & Xinjiang Cui, 2023. "Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Yukun Zhao & Mengyu Duan & Chaoyuan Deng & Jie Yang & Sipeng Yang & Yuchao Zhang & Hua Sheng & Youji Li & Chuncheng Chen & Jincai Zhao, 2023. "Br−/BrO−-mediated highly efficient photoelectrochemical epoxidation of alkenes on α-Fe2O3," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04845-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.