IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41991-3.html
   My bibliography  Save this article

Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array

Author

Listed:
  • Sangyong Park

    (Device Solutions, Samsung Electronics Co. Ltd
    Sungkyunkwan University (SKKU))

  • Dongyoung Lee

    (Sungkyunkwan University (SKKU))

  • Juncheol Kang

    (Sungkyunkwan University (SKKU))

  • Hojin Choi

    (Sungkyunkwan University (SKKU))

  • Jin-Hong Park

    (Sungkyunkwan University (SKKU)
    Sungkyunkwan University (SKKU)
    Sungkyunkwan University (SKKU))

Abstract

In-memory computing is an attractive alternative for handling data-intensive tasks as it employs parallel processing without the need for data transfer. Nevertheless, it necessitates a high-density memory array to effectively manage large data volumes. Here, we present a stacked ferroelectric memory array comprised of laterally gated ferroelectric field-effect transistors (LG-FeFETs). The interlocking effect of the α-In2Se3 is utilized to regulate the channel conductance. Our study examined the distinctive characteristics of the LG-FeFET, such as a notably wide memory window, effective ferroelectric switching, long retention time (over 3 × 104 seconds), and high endurance (over 105 cycles). This device is also well-suited for implementing vertically stacked structures because decreasing its height can help mitigate the challenges associated with the integration process. We devised a 3D stacked structure using the LG-FeFET and verified its feasibility by performing multiply-accumulate (MAC) operations in a two-tier stacked memory configuration.

Suggested Citation

  • Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41991-3
    DOI: 10.1038/s41467-023-41991-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41991-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41991-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaowei Wang & Chao Zhu & Ya Deng & Ruihuan Duan & Jieqiong Chen & Qingsheng Zeng & Jiadong Zhou & Qundong Fu & Lu You & Song Liu & James H. Edgar & Peng Yu & Zheng Liu, 2021. "Author Correction: Van der Waals engineering of ferroelectric heterostructures for long-retention memory," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    2. Kibum Kang & Kan-Heng Lee & Yimo Han & Hui Gao & Saien Xie & David A. Muller & Jiwoong Park, 2017. "Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures," Nature, Nature, vol. 550(7675), pages 229-233, October.
    3. Xiaowei Wang & Chao Zhu & Ya Deng & Ruihuan Duan & Jieqiong Chen & Qingsheng Zeng & Jiadong Zhou & Qundong Fu & Lu You & Song Liu & James H. Edgar & Peng Yu & Zheng Liu, 2021. "Van der Waals engineering of ferroelectric heterostructures for long-retention memory," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Shuiyuan Wang & Lan Liu & Lurong Gan & Huawei Chen & Xiang Hou & Yi Ding & Shunli Ma & David Wei Zhang & Peng Zhou, 2021. "Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Yuan Liu & Yu Huang & Xiangfeng Duan, 2019. "Van der Waals integration before and beyond two-dimensional materials," Nature, Nature, vol. 567(7748), pages 323-333, March.
    6. Yuan Liu & Xidong Duan & Hyeon-Jin Shin & Seongjun Park & Yu Huang & Xiangfeng Duan, 2021. "Promises and prospects of two-dimensional transistors," Nature, Nature, vol. 591(7848), pages 43-53, March.
    7. Seungchul Jung & Hyungwoo Lee & Sungmeen Myung & Hyunsoo Kim & Seung Keun Yoon & Soon-Wan Kwon & Yongmin Ju & Minje Kim & Wooseok Yi & Shinhee Han & Baeseong Kwon & Boyoung Seo & Kilho Lee & Gwan-Hyeo, 2022. "A crossbar array of magnetoresistive memory devices for in-memory computing," Nature, Nature, vol. 601(7892), pages 211-216, January.
    8. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Qingxuan Li & Siwei Wang & Zhenhai Li & Xuemeng Hu & Yongkai Liu & Jiajie Yu & Yafen Yang & Tianyu Wang & Jialin Meng & Qingqing Sun & David Wei Zhang & Lin Chen, 2024. "High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Xinrui Yang & Lu Han & Hongkai Ning & Shaoqing Xu & Bo Hao & Yi-Chi Li & Taotao Li & Yuan Gao & Shengjun Yan & Yueying Li & Chenyi Gu & Weisheng Li & Zhengbin Gu & Yingzhuo Lun & Yi Shi & Jian Zhou & , 2024. "Ultralow-pressure-driven polarization switching in ferroelectric membranes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Kunpeng Si & Yifan Zhao & Peng Zhang & Xingguo Wang & Qianqian He & Juntian Wei & Bixuan Li & Yongxi Wang & Aiping Cao & Zhigao Hu & Peizhe Tang & Feng Ding & Yongji Gong, 2024. "Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In2Se3 on fluor-phlogopite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Liqiang Zhang & Yiliu Wang & Anshi Chu & Zhengwei Zhang & Miaomiao Liu & Xiaohua Shen & Bailing Li & Xu Li & Chen Yi & Rong Song & Yingying Liu & Xiujuan Zhuang & Xidong Duan, 2024. "Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Yu Pan & Tao Jian & Pingfan Gu & Yiwen Song & Qi Wang & Bo Han & Yuqia Ran & Zemin Pan & Yanping Li & Wanjin Xu & Peng Gao & Chendong Zhang & Jun He & Xiaolong Xu & Yu Ye, 2024. "Precise p-type and n-type doping of two-dimensional semiconductors for monolithic integrated circuits," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Chengjian He & Chuan Xu & Chen Chen & Jinmeng Tong & Tianya Zhou & Su Sun & Zhibo Liu & Hui-Ming Cheng & Wencai Ren, 2024. "Unusually high thermal conductivity in suspended monolayer MoSi2N4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Piyush Agarwal & Lisen Huang & Sze Lim & Ranjan Singh, 2022. "Electric-field control of nonlinear THz spintronic emitters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41991-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.