IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46478-3.html
   My bibliography  Save this article

Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations

Author

Listed:
  • Chinnakkaruppan Adaikkan

    (Indian Institute of Science)

  • Justin Joseph

    (Indian Institute of Science)

  • Georgios Foustoukos

    (RIKEN Center for Brain Science
    University of Lausanne)

  • Jun Wang

    (Picower Institute for Learning and Memory, Massachusetts Institute of Technology)

  • Denis Polygalov

    (RIKEN Center for Brain Science)

  • Roman Boehringer

    (RIKEN Center for Brain Science)

  • Steven J. Middleton

    (RIKEN Center for Brain Science)

  • Arthur J. Y. Huang

    (RIKEN Center for Brain Science)

  • Li-Huei Tsai

    (Picower Institute for Learning and Memory, Massachusetts Institute of Technology
    Broad Institute of Harvard and Massachusetts Institute of Technology)

  • Thomas J. McHugh

    (RIKEN Center for Brain Science
    The University of Tokyo)

Abstract

The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.

Suggested Citation

  • Chinnakkaruppan Adaikkan & Justin Joseph & Georgios Foustoukos & Jun Wang & Denis Polygalov & Roman Boehringer & Steven J. Middleton & Arthur J. Y. Huang & Li-Huei Tsai & Thomas J. McHugh, 2024. "Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46478-3
    DOI: 10.1038/s41467-024-46478-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46478-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46478-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    2. Laura Lee Colgin & Tobias Denninger & Marianne Fyhn & Torkel Hafting & Tora Bonnevie & Ole Jensen & May-Britt Moser & Edvard I. Moser, 2009. "Frequency of gamma oscillations routes flow of information in the hippocampus," Nature, Nature, vol. 462(7271), pages 353-357, November.
    3. André Fisahn & Fenella G. Pike & Eberhard H. Buhl & Ole Paulsen, 1998. "Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro," Nature, Nature, vol. 394(6689), pages 186-189, July.
    4. Frederick L. Hitti & Steven A. Siegelbaum, 2014. "The hippocampal CA2 region is essential for social memory," Nature, Nature, vol. 508(7494), pages 88-92, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Marije ter Wal & Juan Linde-Domingo & Julia Lifanov & Frédéric Roux & Luca D. Kolibius & Stephanie Gollwitzer & Johannes Lang & Hajo Hamer & David Rollings & Vijay Sawlani & Ramesh Chelvarajah & Bernh, 2021. "Theta rhythmicity governs human behavior and hippocampal signals during memory-dependent tasks," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Natalia Grion & Athena Akrami & Yangfang Zuo & Federico Stella & Mathew E Diamond, 2016. "Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination," PLOS Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    4. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Jennifer B Tennessen & Marla M Holt & Brianna M Wright & M Bradley Hanson & Candice K Emmons & Deborah A Giles & Jeffrey T Hogan & Sheila J Thornton & Volker B Deecke, 2023. "Divergent foraging strategies between populations of sympatric matrilineal killer whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 373-386.
    7. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Myung Chung & Katsutoshi Imanaka & Ziyan Huang & Akiyuki Watarai & Mu-Yun Wang & Kentaro Tao & Hirotaka Ejima & Tomomi Aida & Guoping Feng & Teruhiro Okuyama, 2024. "Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Pengcheng Zhou & Shawn D Burton & Adam C Snyder & Matthew A Smith & Nathaniel N Urban & Robert E Kass, 2015. "Establishing a Statistical Link between Network Oscillations and Neural Synchrony," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-25, October.
    10. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    12. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Mojtaba Chehelcheraghi & Cees van Leeuwen & Erik Steur & Chie Nakatani, 2017. "A neural mass model of cross frequency coupling," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    14. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    15. Thomas Schreiner & Benjamin J. Griffiths & Merve Kutlu & Christian Vollmar & Elisabeth Kaufmann & Stefanie Quach & Jan Remi & Soheyl Noachtar & Tobias Staudigl, 2024. "Spindle-locked ripples mediate memory reactivation during human NREM sleep," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    17. Oscar J Avella Gonzalez & Karlijn I van Aerde & Huibert D Mansvelder & Jaap van Pelt & Arjen van Ooyen, 2014. "Inter-Network Interactions: Impact of Connections between Oscillatory Neuronal Networks on Oscillation Frequency and Pattern," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-16, July.
    18. Alexis T Baria & Brian Maniscalco & Biyu J He, 2017. "Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-29, November.
    19. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    20. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46478-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.