IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37081-z.html
   My bibliography  Save this article

Chirality coupling in topological magnetic textures with multiple magnetochiral parameters

Author

Listed:
  • Oleksii M. Volkov

    (Institute of Ion Beam Physics and Materials Research)

  • Daniel Wolf

    (Institute for Solid State Research)

  • Oleksandr V. Pylypovskyi

    (Institute of Ion Beam Physics and Materials Research
    Kyiv Academic University)

  • Attila Kákay

    (Institute of Ion Beam Physics and Materials Research)

  • Denis D. Sheka

    (Taras Shevchenko National University of Kyiv)

  • Bernd Büchner

    (Institute for Solid State Research
    Institute of Solid State and Materials Physics
    Würzburg-Dresden Cluster of Excellence ct.qmat)

  • Jürgen Fassbender

    (Institute of Ion Beam Physics and Materials Research)

  • Axel Lubk

    (Institute for Solid State Research
    Institute of Solid State and Materials Physics
    Würzburg-Dresden Cluster of Excellence ct.qmat)

  • Denys Makarov

    (Institute of Ion Beam Physics and Materials Research)

Abstract

Chiral effects originate from the lack of inversion symmetry within the lattice unit cell or sample’s shape. Being mapped onto magnetic ordering, chirality enables topologically non-trivial textures with a given handedness. Here, we demonstrate the existence of a static 3D texture characterized by two magnetochiral parameters being magnetic helicity of the vortex and geometrical chirality of the core string itself in geometrically curved asymmetric permalloy cap with a size of 80 nm and a vortex ground state. We experimentally validate the nonlocal chiral symmetry breaking effect in this object, which leads to the geometric deformation of the vortex string into a helix with curvature 3 μm−1 and torsion 11 μm−1. The geometric chirality of the vortex string is determined by the magnetic helicity of the vortex texture, constituting coupling of two chiral parameters within the same texture. Beyond the vortex state, we anticipate that complex curvilinear objects hosting 3D magnetic textures like curved skyrmion tubes and hopfions can be characterized by multiple coupled magnetochiral parameters, that influence their statics and field- or current-driven dynamics for spin-orbitronics and magnonics.

Suggested Citation

  • Oleksii M. Volkov & Daniel Wolf & Oleksandr V. Pylypovskyi & Attila Kákay & Denis D. Sheka & Bernd Büchner & Jürgen Fassbender & Axel Lubk & Denys Makarov, 2023. "Chirality coupling in topological magnetic textures with multiple magnetochiral parameters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37081-z
    DOI: 10.1038/s41467-023-37081-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37081-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37081-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. D. Sheka & C. Schuster & B. A. Ivanov & F. G. Mertens, 2006. "Dynamics of topological solitons in two-dimensional ferromagnets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(3), pages 393-402, April.
    2. S. Seki & M. Garst & J. Waizner & R. Takagi & N. D. Khanh & Y. Okamura & K. Kondou & F. Kagawa & Y. Otani & Y. Tokura, 2020. "Propagation dynamics of spin excitations along skyrmion strings," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. M. Bode & M. Heide & K. von Bergmann & P. Ferriani & S. Heinze & G. Bihlmayer & A. Kubetzka & O. Pietzsch & S. Blügel & R. Wiesendanger, 2007. "Chiral magnetic order at surfaces driven by inversion asymmetry," Nature, Nature, vol. 447(7141), pages 190-193, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Gong Chen & Colin Ophus & Alberto Quintana & Heeyoung Kwon & Changyeon Won & Haifeng Ding & Yizheng Wu & Andreas K. Schmid & Kai Liu, 2022. "Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jagannath Jena & Börge Göbel & Tomoki Hirosawa & Sebastián A. Díaz & Daniel Wolf & Taichi Hinokihara & Vivek Kumar & Ingrid Mertig & Claudia Felser & Axel Lubk & Daniel Loss & Stuart S. P. Parkin, 2022. "Observation of fractional spin textures in a Heusler material," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Qianbiao Liu & Long Liu & Guozhong Xing & Lijun Zhu, 2024. "Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. M. T. Birch & D. Cortés-Ortuño & K. Litzius & S. Wintz & F. Schulz & M. Weigand & A. Štefančič & D. A. Mayoh & G. Balakrishnan & P. D. Hatton & G. Schütz, 2022. "Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Matthieu Grelier & Florian Godel & Aymeric Vecchiola & Sophie Collin & Karim Bouzehouane & Albert Fert & Vincent Cros & Nicolas Reyren, 2022. "Three-dimensional skyrmionic cocoons in magnetic multilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37081-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.