IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47339-9.html
   My bibliography  Save this article

Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet

Author

Listed:
  • Davide Girardi

    (Politecnico di Milano; Piazza Leonardo da Vinci 32)

  • Simone Finizio

    (Paul Scherrer Institut; Forschungsstrasse 111 5232 PSI)

  • Claire Donnelly

    (Max Planck Institute for Chemical Physics of Solids; Nöthnitzer Str. 40
    Hiroshima University)

  • Guglielmo Rubini

    (Politecnico di Milano; Piazza Leonardo da Vinci 32)

  • Sina Mayr

    (Paul Scherrer Institut; Forschungsstrasse 111 5232 PSI
    ETH Zurich)

  • Valerio Levati

    (Politecnico di Milano; Piazza Leonardo da Vinci 32)

  • Simone Cuccurullo

    (Politecnico di Milano; Piazza Leonardo da Vinci 32)

  • Federico Maspero

    (Politecnico di Milano; Piazza Leonardo da Vinci 32)

  • Jörg Raabe

    (Paul Scherrer Institut; Forschungsstrasse 111 5232 PSI)

  • Daniela Petti

    (Politecnico di Milano; Piazza Leonardo da Vinci 32)

  • Edoardo Albisetti

    (Politecnico di Milano; Piazza Leonardo da Vinci 32)

Abstract

Spin waves are collective perturbations in the orientation of the magnetic moments in magnetically ordered materials. Their rich phenomenology is intrinsically three-dimensional; however, the three-dimensional imaging of spin waves has so far not been possible. Here, we image the three-dimensional dynamics of spin waves excited in a synthetic antiferromagnet, with nanoscale spatial resolution and sub-ns temporal resolution, using time-resolved magnetic laminography. In this way, we map the distribution of the spin-wave modes throughout the volume of the structure, revealing unexpected depth-dependent profiles originating from the interlayer dipolar interaction. We experimentally demonstrate the existence of complex three-dimensional interference patterns and analyze them via micromagnetic modelling. We find that these patterns are generated by the superposition of spin waves with non-uniform amplitude profiles, and that their features can be controlled by tuning the composition and structure of the magnetic system. Our results open unforeseen possibilities for the study and manipulation of complex spin-wave modes within nanostructures and magnonic devices.

Suggested Citation

  • Davide Girardi & Simone Finizio & Claire Donnelly & Guglielmo Rubini & Sina Mayr & Valerio Levati & Simone Cuccurullo & Federico Maspero & Jörg Raabe & Daniela Petti & Edoardo Albisetti, 2024. "Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47339-9
    DOI: 10.1038/s41467-024-47339-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47339-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47339-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivia Nicoletti & Francisco de la Peña & Rowan K. Leary & Daniel J. Holland & Caterina Ducati & Paul A. Midgley, 2013. "Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles," Nature, Nature, vol. 502(7469), pages 80-84, October.
    2. Qi Wang & Andrii V. Chumak & Philipp Pirro, 2021. "Inverse-design magnonic devices," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Ádám Papp & Wolfgang Porod & Gyorgy Csaba, 2021. "Nanoscale neural network using non-linear spin-wave interference," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. H. Merbouche & B. Divinskiy & D. Gouéré & R. Lebrun & A. El Kanj & V. Cros & P. Bortolotti & A. Anane & S. O. Demokritov & V. E. Demidov, 2024. "True amplification of spin waves in magnonic nano-waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Ádám Papp & Wolfgang Porod & Gyorgy Csaba, 2021. "Nanoscale neural network using non-linear spin-wave interference," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Lukas Körber & Christopher Heins & Tobias Hula & Joo-Von Kim & Sonia Thlang & Helmut Schultheiss & Jürgen Fassbender & Katrin Schultheiss, 2023. "Pattern recognition in reciprocal space with a magnon-scattering reservoir," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Jonathan Schwartz & Zichao Wendy Di & Yi Jiang & Jason Manassa & Jacob Pietryga & Yiwen Qian & Min Gee Cho & Jonathan L. Rowell & Huihuo Zheng & Richard D. Robinson & Junsi Gu & Alexey Kirilin & Steve, 2024. "Imaging 3D chemistry at 1 nm resolution with fused multi-modal electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47339-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.