IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52084-0.html
   My bibliography  Save this article

All-magnonic repeater based on bistability

Author

Listed:
  • Qi Wang

    (Huazhong University of Science and Technology)

  • Roman Verba

    (Institute of Magnetism)

  • Kristýna Davídková

    (University of Vienna)

  • Björn Heinz

    (Rheinland-Pfälzische Technische Universität Kaiserlautern-Landau)

  • Shixian Tian

    (Hubei University)

  • Yiheng Rao

    (Hubei University
    Hubei Yangtze Memory Laboratories)

  • Mengying Guo

    (Huazhong University of Science and Technology)

  • Xueyu Guo

    (Huazhong University of Science and Technology)

  • Carsten Dubs

    (INNOVENT e.V., Technologieentwicklung)

  • Philipp Pirro

    (Rheinland-Pfälzische Technische Universität Kaiserlautern-Landau)

  • Andrii V. Chumak

    (University of Vienna)

Abstract

Bistability, a universal phenomenon found in diverse fields such as biology, chemistry, and physics, describes a scenario in which a system has two stable equilibrium states and resets to one of the two states. The ability to switch between these two states is the basis for a wide range of applications, particularly in memory and logic operations. Here, we present a universal approach to achieve bistable switching in magnonics, the field processing data using spin waves. A pronounced bistable window is observed in a 1 μm wide magnonic conduit under an external rf drive. The system is characterized by two magnonic stable states defined as low and high spin-wave amplitude states. The switching between these two states is realized by another propagating spin wave sent into the rf driven region. This magnonic bistable switching is used to design a magnonic repeater, which receives the original decayed and distorted spin wave and regenerates a new spin wave with amplified amplitude and normalized phase. Our magnonic repeater can be installed at the inputs of each magnonic logic gate to overcome the spin-wave amplitude degradation and phase distortion during previous propagation and achieve integrated magnonic circuits or magnonic neuromorphic networks.

Suggested Citation

  • Qi Wang & Roman Verba & Kristýna Davídková & Björn Heinz & Shixian Tian & Yiheng Rao & Mengying Guo & Xueyu Guo & Carsten Dubs & Philipp Pirro & Andrii V. Chumak, 2024. "All-magnonic repeater based on bistability," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52084-0
    DOI: 10.1038/s41467-024-52084-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52084-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52084-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhen-Sheng Yuan & Yu-Ao Chen & Bo Zhao & Shuai Chen & Jörg Schmiedmayer & Jian-Wei Pan, 2008. "Experimental demonstration of a BDCZ quantum repeater node," Nature, Nature, vol. 454(7208), pages 1098-1101, August.
    2. Yasushi Hasegawa & Rikizo Ikuta & Nobuyuki Matsuda & Kiyoshi Tamaki & Hoi-Kwong Lo & Takashi Yamamoto & Koji Azuma & Nobuyuki Imoto, 2019. "Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Andrii V. Chumak & Alexander A. Serga & Burkard Hillebrands, 2014. "Magnon transistor for all-magnon data processing," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    4. Ádám Papp & Wolfgang Porod & Gyorgy Csaba, 2021. "Nanoscale neural network using non-linear spin-wave interference," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Chuanpu Liu & Jilei Chen & Tao Liu & Florian Heimbach & Haiming Yu & Yang Xiao & Junfeng Hu & Mengchao Liu & Houchen Chang & Tobias Stueckler & Sa Tu & Youguang Zhang & Yan Zhang & Peng Gao & Zhimin L, 2018. "Long-distance propagation of short-wavelength spin waves," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Merbouche & B. Divinskiy & D. Gouéré & R. Lebrun & A. El Kanj & V. Cros & P. Bortolotti & A. Anane & S. O. Demokritov & V. E. Demidov, 2024. "True amplification of spin waves in magnonic nano-waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. G. Poelchen & J. Hellwig & M. Peters & D. Yu. Usachov & K. Kliemt & C. Laubschat & P. M. Echenique & E. V. Chulkov & C. Krellner & S. S. P. Parkin & D. V. Vyalikh & A. Ernst & K. Kummer, 2023. "Long-lived spin waves in a metallic antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Davide Girardi & Simone Finizio & Claire Donnelly & Guglielmo Rubini & Sina Mayr & Valerio Levati & Simone Cuccurullo & Federico Maspero & Jörg Raabe & Daniela Petti & Edoardo Albisetti, 2024. "Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Rouven Dreyer & Alexander F. Schäffer & Hans G. Bauer & Niklas Liebing & Jamal Berakdar & Georg Woltersdorf, 2022. "Imaging and phase-locking of non-linear spin waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. K. An & M. Xu & A. Mucchietto & C. Kim & K.-W. Moon & C. Hwang & D. Grundler, 2024. "Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Lukas Körber & Christopher Heins & Tobias Hula & Joo-Von Kim & Sonia Thlang & Helmut Schultheiss & Jürgen Fassbender & Katrin Schultheiss, 2023. "Pattern recognition in reciprocal space with a magnon-scattering reservoir," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52084-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.