IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37078-8.html
   My bibliography  Save this article

Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory

Author

Listed:
  • Korbinian Baumgaertl

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Dirk Grundler

    (École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

Abstract

Despite the unprecedented downscaling of CMOS integrated circuits, memory-intensive machine learning and artificial intelligence applications are limited by data conversion between memory and processor. There is a challenging quest for novel approaches to overcome this so-called von Neumann bottleneck. Magnons are the quanta of spin waves. Their angular momentum enables power-efficient computation without charge flow. The conversion problem would be solved if spin wave amplitudes could be stored directly in a magnetic memory. Here, we report the reversal of ferromagnetic nanostripes by spin waves which propagate in an underlying spin-wave bus. Thereby, the charge-free angular momentum flow is stored after transmission over a macroscopic distance. We show that the spin waves can reverse large arrays of ferromagnetic stripes at a strikingly small power level. Combined with the already existing wave logic, our discovery is path-breaking for the new era of magnonics-based in-memory computation and beyond von Neumann computer architectures.

Suggested Citation

  • Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37078-8
    DOI: 10.1038/s41467-023-37078-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37078-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37078-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. O. Demokritov & V. E. Demidov & O. Dzyapko & G. A. Melkov & A. A. Serga & B. Hillebrands & A. N. Slavin, 2006. "Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping," Nature, Nature, vol. 443(7110), pages 430-433, September.
    2. Huajun Qin & Rasmus B. Holländer & Lukáš Flajšman & Felix Hermann & Rouven Dreyer & Georg Woltersdorf & Sebastiaan van Dijken, 2021. "Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Haiming Yu & O. d’ Allivy Kelly & V. Cros & R. Bernard & P. Bortolotti & A. Anane & F. Brandl & F. Heimbach & D. Grundler, 2016. "Approaching soft X-ray wavelengths in nanomagnet-based microwave technology," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    4. Haiming Yu & G. Duerr & R. Huber & M. Bahr & T. Schwarze & F. Brandl & D. Grundler, 2013. "Omnidirectional spin-wave nanograting coupler," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    5. Ádám Papp & Wolfgang Porod & Gyorgy Csaba, 2021. "Nanoscale neural network using non-linear spin-wave interference," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Chuanpu Liu & Jilei Chen & Tao Liu & Florian Heimbach & Haiming Yu & Yang Xiao & Junfeng Hu & Mengchao Liu & Houchen Chang & Tobias Stueckler & Sa Tu & Youguang Zhang & Yan Zhang & Peng Gao & Zhimin L, 2018. "Long-distance propagation of short-wavelength spin waves," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Merbouche & B. Divinskiy & D. Gouéré & R. Lebrun & A. El Kanj & V. Cros & P. Bortolotti & A. Anane & S. O. Demokritov & V. E. Demidov, 2024. "True amplification of spin waves in magnonic nano-waveguides," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Rouven Dreyer & Alexander F. Schäffer & Hans G. Bauer & Niklas Liebing & Jamal Berakdar & Georg Woltersdorf, 2022. "Imaging and phase-locking of non-linear spin waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. K. An & M. Xu & A. Mucchietto & C. Kim & K.-W. Moon & C. Hwang & D. Grundler, 2024. "Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Qi Wang & Roman Verba & Kristýna Davídková & Björn Heinz & Shixian Tian & Yiheng Rao & Mengying Guo & Xueyu Guo & Carsten Dubs & Philipp Pirro & Andrii V. Chumak, 2024. "All-magnonic repeater based on bistability," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Jianyu Zhang & Mingfeng Chen & Jilei Chen & Kei Yamamoto & Hanchen Wang & Mohammad Hamdi & Yuanwei Sun & Kai Wagner & Wenqing He & Yu Zhang & Ji Ma & Peng Gao & Xiufeng Han & Dapeng Yu & Patrick Malet, 2021. "Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Davide Girardi & Simone Finizio & Claire Donnelly & Guglielmo Rubini & Sina Mayr & Valerio Levati & Simone Cuccurullo & Federico Maspero & Jörg Raabe & Daniela Petti & Edoardo Albisetti, 2024. "Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. B. Divinskiy & H. Merbouche & V. E. Demidov & K. O. Nikolaev & L. Soumah & D. Gouéré & R. Lebrun & V. Cros & Jamal Ben Youssef & P. Bortolotti & A. Anane & S. O. Demokritov, 2021. "Evidence for spin current driven Bose-Einstein condensation of magnons," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    12. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Yoichi Shiota & Tomohiro Taniguchi & Daiju Hayashi & Hideki Narita & Shutaro Karube & Ryusuke Hisatomi & Takahiro Moriyama & Teruo Ono, 2024. "Handedness manipulation of propagating antiferromagnetic magnons," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Ellen Fogh & Mithilesh Nayak & Oleksandr Prokhnenko & Maciej Bartkowiak & Koji Munakata & Jian-Rui Soh & Alexandra A. Turrini & Mohamed E. Zayed & Ekaterina Pomjakushina & Hiroshi Kageyama & Hiroyuki , 2024. "Field-induced bound-state condensation and spin-nematic phase in SrCu2(BO3)2 revealed by neutron scattering up to 25.9 T," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Lukas Körber & Christopher Heins & Tobias Hula & Joo-Von Kim & Sonia Thlang & Helmut Schultheiss & Jürgen Fassbender & Katrin Schultheiss, 2023. "Pattern recognition in reciprocal space with a magnon-scattering reservoir," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37078-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.