IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46265-0.html
   My bibliography  Save this article

Diet changes due to urbanization in South Africa are linked to microbiome and metabolome signatures of Westernization and colorectal cancer

Author

Listed:
  • M. C. Ramaboli

    (Stellenbosch University)

  • S. Ocvirk

    (University of Pittsburgh
    German Institute of Human Nutrition
    Technical University of Munich)

  • M. Khan Mirzaei

    (Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health
    Technical University of Munich)

  • B. L. Eberhart

    (University of Pittsburgh)

  • M. Valdivia-Garcia

    (Faculty of Medicine, Imperial College London)

  • A. Metwaly

    (Technical University of Munich)

  • K. Neuhaus

    (Technical University of Munich)

  • G. Barker

    (Faculty of Medicine, Imperial College London)

  • J. Ru

    (Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health
    Technical University of Munich)

  • L. T. Nesengani

    (University of South Africa)

  • D. Mahdi-Joest

    (German Institute of Human Nutrition)

  • A. S. Wilson

    (University of Pittsburgh)

  • S. K. Joni

    (University of the Western Cape)

  • D. C. Layman

    (University of the Western Cape)

  • J. Zheng

    (University of Alberta)

  • R. Mandal

    (University of Alberta)

  • Q. Chen

    (Faculty of Medicine, Imperial College London)

  • M. R. Perez

    (University of Pittsburgh)

  • S. Fortuin

    (Stellenbosch University)

  • B. Gaunt

    (Zithulele Hospital)

  • D. Wishart

    (University of Alberta)

  • B. Methé

    (University of Pittsburgh)

  • D. Haller

    (Technical University of Munich
    Technical University of Munich)

  • J. V. Li

    (Faculty of Medicine, Imperial College London)

  • L. Deng

    (Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health
    Technical University of Munich)

  • R. Swart

    (University of the Western Cape)

  • S. J. D. O’Keefe

    (Stellenbosch University
    University of Pittsburgh)

Abstract

Transition from traditional high-fiber to Western diets in urbanizing communities of Sub-Saharan Africa is associated with increased risk of non-communicable diseases (NCD), exemplified by colorectal cancer (CRC) risk. To investigate how urbanization gives rise to microbial patterns that may be amenable by dietary intervention, we analyzed diet intake, fecal 16 S bacteriome, virome, and metabolome in a cross-sectional study in healthy rural and urban Xhosa people (South Africa). Urban Xhosa individuals had higher intakes of energy (urban: 3,578 ± 455; rural: 2,185 ± 179 kcal/d), fat and animal protein. This was associated with lower fecal bacteriome diversity and a shift from genera favoring degradation of complex carbohydrates (e.g., Prevotella) to taxa previously shown to be associated with bile acid metabolism and CRC. Urban Xhosa individuals had higher fecal levels of deoxycholic acid, shown to be associated with higher CRC risk, but similar short-chain fatty acid concentrations compared with rural individuals. Fecal virome composition was associated with distinct gut bacterial communities across urbanization, characterized by different dominant host bacteria (urban: Bacteriodota; rural: unassigned taxa) and variable correlation with fecal metabolites and dietary nutrients. Food and skin microbiota samples showed compositional differences along the urbanization gradient. Rural-urban dietary transition in South Africa is linked to major changes in the gut microbiome and metabolome. Further studies are needed to prove cause and identify whether restoration of specific components of the traditional diet will arrest the accelerating rise in NCDs in Sub-Saharan Africa.

Suggested Citation

  • M. C. Ramaboli & S. Ocvirk & M. Khan Mirzaei & B. L. Eberhart & M. Valdivia-Garcia & A. Metwaly & K. Neuhaus & G. Barker & J. Ru & L. T. Nesengani & D. Mahdi-Joest & A. S. Wilson & S. K. Joni & D. C. , 2024. "Diet changes due to urbanization in South Africa are linked to microbiome and metabolome signatures of Westernization and colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46265-0
    DOI: 10.1038/s41467-024-46265-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46265-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46265-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suzanne Devkota & Yunwei Wang & Mark W. Musch & Vanessa Leone & Hannah Fehlner-Peach & Anuradha Nadimpalli & Dionysios A. Antonopoulos & Bana Jabri & Eugene B. Chang, 2012. "Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice," Nature, Nature, vol. 487(7405), pages 104-108, July.
    2. Erica D. Sonnenburg & Samuel A. Smits & Mikhail Tikhonov & Steven K. Higginbottom & Ned S. Wingreen & Justin L. Sonnenburg, 2016. "Diet-induced extinctions in the gut microbiota compound over generations," Nature, Nature, vol. 529(7585), pages 212-215, January.
    3. Kristopher Kieft & Zhichao Zhou & Rika E. Anderson & Alison Buchan & Barbara J. Campbell & Steven J. Hallam & Matthias Hess & Matthew B. Sullivan & David A. Walsh & Simon Roux & Karthik Anantharaman, 2021. "Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huimin Ye & Sabrina Borusak & Claudia Eberl & Julia Krasenbrink & Anna S. Weiss & Song-Can Chen & Buck T. Hanson & Bela Hausmann & Craig W. Herbold & Manuel Pristner & Benjamin Zwirzitz & Benedikt War, 2023. "Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Ren Dodge & Eric W. Jones & Haolong Zhu & Benjamin Obadia & Daniel J. Martinez & Chenhui Wang & Andrés Aranda-Díaz & Kevin Aumiller & Zhexian Liu & Marco Voltolini & Eoin L. Brodie & Kerwyn Casey Huan, 2023. "A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Sandra M. Holmberg & Rachel H. Feeney & Vishnu Prasoodanan P.K. & Fabiola Puértolas-Balint & Dhirendra K. Singh & Supapit Wongkuna & Lotte Zandbergen & Hans Hauner & Beate Brandl & Anni I. Nieminen & , 2024. "The gut commensal Blautia maintains colonic mucus function under low-fiber consumption through secretion of short-chain fatty acids," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Meishun Yu & Menghui Zhang & Runying Zeng & Ruolin Cheng & Rui Zhang & Yanping Hou & Fangfang Kuang & Xuejin Feng & Xiyang Dong & Yinfang Li & Zongze Shao & Min Jin, 2024. "Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Bo Tang & Li Tang & Shengpeng Li & Shuang Liu & Jialin He & Pan Li & Sumin Wang & Min Yang & Longhui Zhang & Yuanyuan Lei & Dianji Tu & Xuefeng Tang & Hua Hu & Qin Ouyang & Xia Chen & Shiming Yang, 2023. "Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Jianan Zhang & Morgan E. Walker & Katherine Z. Sanidad & Hongna Zhang & Yanshan Liang & Ermin Zhao & Katherine Chacon-Vargas & Vladimir Yeliseyev & Julie Parsonnet & Thomas D. Haggerty & Guangqiang Wa, 2022. "Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Kang Li & Zeng Dan & Luobu Gesang & Hong Wang & Yongjian Zhou & Yanlei Du & Yi Ren & Yixiang Shi & Yuqiang Nie, 2016. "Comparative Analysis of Gut Microbiota of Native Tibetan and Han Populations Living at Different Altitudes," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    9. Karen D. Corbin & Elvis A. Carnero & Blake Dirks & Daria Igudesman & Fanchao Yi & Andrew Marcus & Taylor L. Davis & Richard E. Pratley & Bruce E. Rittmann & Rosa Krajmalnik-Brown & Steven R. Smith, 2023. "Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Kotaro Soeda & Takayoshi Sasako & Kenichiro Enooku & Naoto Kubota & Naoki Kobayashi & Yoshiko Matsumoto Ikushima & Motoharu Awazawa & Ryotaro Bouchi & Gotaro Toda & Tomoharu Yamada & Takuma Nakatsuka , 2023. "Gut insulin action protects from hepatocarcinogenesis in diabetic mice comorbid with nonalcoholic steatohepatitis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Alan C. Logan & Susan L. Prescott, 2017. "Astrofood, Priorities and Pandemics: Reflections of an Ultra-Processed Breakfast Program and Contemporary Dysbiotic Drift," Challenges, MDPI, vol. 8(2), pages 1-24, September.
    12. Mengzhi Ji & Jiayin Zhou & Yan Li & Kai Ma & Wen Song & Yueyue Li & Jizhong Zhou & Qichao Tu, 2024. "Biodiversity of mudflat intertidal viromes along the Chinese coasts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Giuliano Bonanomi & Mohamed Idbella & Ahmed M. Abd-ElGawad, 2021. "Microbiota Management for Effective Disease Suppression: A Systematic Comparison between Soil and Mammals Gut," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    14. Marc Schoeler & Sandrine Ellero-Simatos & Till Birkner & Jordi Mayneris-Perxachs & Lisa Olsson & Harald Brolin & Ulrike Loeber & Jamie D. Kraft & Arnaud Polizzi & Marian Martí-Navas & Josep Puig & Ant, 2023. "The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Liyun An & Xinwu Liu & Jianwei Wang & Jinbo Xu & Xiaoli Chen & Xiaonan Liu & Bingxin Hu & Yong Nie & Xiao-Lei Wu, 2024. "Global diversity and ecological functions of viruses inhabiting oil reservoirs," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Wenjie Ma & Yiqing Wang & Long H. Nguyen & Raaj S. Mehta & Jane Ha & Amrisha Bhosle & Lauren J. Mclver & Mingyang Song & Clary B. Clish & Lisa L. Strate & Curtis Huttenhower & Andrew T. Chan, 2024. "Gut microbiome composition and metabolic activity in women with diverticulitis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Susan L. Prescott & Alan C. Logan, 2017. "Down to Earth: Planetary Health and Biophilosophy in the Symbiocene Epoch," Challenges, MDPI, vol. 8(2), pages 1-22, August.
    18. Jie-Liang Liang & Shi-wei Feng & Jing-li Lu & Xiao-nan Wang & Feng-lin Li & Yu-qian Guo & Shen-yan Liu & Yuan-yue Zhuang & Sheng-ji Zhong & Jin Zheng & Ping Wen & Xinzhu Yi & Pu Jia & Bin Liao & Wen-s, 2024. "Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46265-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.