IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23698-5.html
   My bibliography  Save this article

Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages

Author

Listed:
  • Kristopher Kieft

    (University of Wisconsin–Madison)

  • Zhichao Zhou

    (University of Wisconsin–Madison)

  • Rika E. Anderson

    (Carleton College)

  • Alison Buchan

    (University of Tennessee)

  • Barbara J. Campbell

    (Life Science Facility, Clemson University)

  • Steven J. Hallam

    (University of British Columbia
    University of British Columbia, Genome Sciences Centre
    University of British Columbia
    University of British Columbia)

  • Matthias Hess

    (University of California Davis)

  • Matthew B. Sullivan

    (The Ohio State University)

  • David A. Walsh

    (Concordia University)

  • Simon Roux

    (Lawrence Berkeley National Laboratory)

  • Karthik Anantharaman

    (University of Wisconsin–Madison)

Abstract

Microbial sulfur metabolism contributes to biogeochemical cycling on global scales. Sulfur metabolizing microbes are infected by phages that can encode auxiliary metabolic genes (AMGs) to alter sulfur metabolism within host cells but remain poorly characterized. Here we identified 191 phages derived from twelve environments that encoded 227 AMGs for oxidation of sulfur and thiosulfate (dsrA, dsrC/tusE, soxC, soxD and soxYZ). Evidence for retention of AMGs during niche-differentiation of diverse phage populations provided evidence that auxiliary metabolism imparts measurable fitness benefits to phages with ramifications for ecosystem biogeochemistry. Gene abundance and expression profiles of AMGs suggested significant contributions by phages to sulfur and thiosulfate oxidation in freshwater lakes and oceans, and a sensitive response to changing sulfur concentrations in hydrothermal environments. Overall, our study provides fundamental insights on the distribution, diversity, and ecology of phage auxiliary metabolism associated with sulfur and reinforces the necessity of incorporating viral contributions into biogeochemical configurations.

Suggested Citation

  • Kristopher Kieft & Zhichao Zhou & Rika E. Anderson & Alison Buchan & Barbara J. Campbell & Steven J. Hallam & Matthias Hess & Matthew B. Sullivan & David A. Walsh & Simon Roux & Karthik Anantharaman, 2021. "Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23698-5
    DOI: 10.1038/s41467-021-23698-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23698-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23698-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. C. Ramaboli & S. Ocvirk & M. Khan Mirzaei & B. L. Eberhart & M. Valdivia-Garcia & A. Metwaly & K. Neuhaus & G. Barker & J. Ru & L. T. Nesengani & D. Mahdi-Joest & A. S. Wilson & S. K. Joni & D. C. , 2024. "Diet changes due to urbanization in South Africa are linked to microbiome and metabolome signatures of Westernization and colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Meishun Yu & Menghui Zhang & Runying Zeng & Ruolin Cheng & Rui Zhang & Yanping Hou & Fangfang Kuang & Xuejin Feng & Xiyang Dong & Yinfang Li & Zongze Shao & Min Jin, 2024. "Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Jie-Liang Liang & Shi-wei Feng & Jing-li Lu & Xiao-nan Wang & Feng-lin Li & Yu-qian Guo & Shen-yan Liu & Yuan-yue Zhuang & Sheng-ji Zhong & Jin Zheng & Ping Wen & Xinzhu Yi & Pu Jia & Bin Liao & Wen-s, 2024. "Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23698-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.