IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41008-z.html
   My bibliography  Save this article

Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut

Author

Listed:
  • Huimin Ye

    (University of Vienna
    University of Vienna)

  • Sabrina Borusak

    (University of Konstanz)

  • Claudia Eberl

    (Ludwig Maximilian University Munich)

  • Julia Krasenbrink

    (University of Vienna
    University of Vienna)

  • Anna S. Weiss

    (Ludwig Maximilian University Munich)

  • Song-Can Chen

    (University of Vienna)

  • Buck T. Hanson

    (University of Vienna
    Safety and Innovation FFoQSI GmbH
    University of Veterinary Medicine)

  • Bela Hausmann

    (Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna
    Medical University of Vienna)

  • Craig W. Herbold

    (University of Vienna
    University of Canterbury)

  • Manuel Pristner

    (University of Vienna)

  • Benjamin Zwirzitz

    (University of Vienna
    Safety and Innovation FFoQSI GmbH
    University of Veterinary Medicine
    University of Natural Resources and Life Sciences)

  • Benedikt Warth

    (University of Vienna
    Research Infrastructure and National EIRENE Hub)

  • Petra Pjevac

    (University of Vienna
    Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna)

  • David Schleheck

    (University of Konstanz)

  • Bärbel Stecher

    (Ludwig Maximilian University Munich
    partner site Ludwig Maximilian University Munich)

  • Alexander Loy

    (University of Vienna
    Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna)

Abstract

Taurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dependent on other bacteria for release of taurine from bile acids. Colonization of T. muris in gnotobiotic mice increased deconjugation of taurine-conjugated bile acids and transcriptional activity of a sulfur metabolism gene-encoding prophage in other commensals, and slightly decreased the abundance of Salmonella enterica, which showed reduced expression of galactonate catabolism genes. Re-analysis of metagenome data from a previous study further suggested that T. muris can contribute to protection against pathogens by the commensal mouse gut microbiota. Together, we show the realized physiological niche of a key murine gut sulfidogen and its interactions with selected gut microbiota members.

Suggested Citation

  • Huimin Ye & Sabrina Borusak & Claudia Eberl & Julia Krasenbrink & Anna S. Weiss & Song-Can Chen & Buck T. Hanson & Bela Hausmann & Craig W. Herbold & Manuel Pristner & Benjamin Zwirzitz & Benedikt War, 2023. "Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41008-z
    DOI: 10.1038/s41467-023-41008-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41008-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41008-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence A. David & Corinne F. Maurice & Rachel N. Carmody & David B. Gootenberg & Julie E. Button & Benjamin E. Wolfe & Alisha V. Ling & A. Sloan Devlin & Yug Varma & Michael A. Fischbach & Sudha B. , 2014. "Diet rapidly and reproducibly alters the human gut microbiome," Nature, Nature, vol. 505(7484), pages 559-563, January.
    2. Walid Mottawea & Cheng-Kang Chiang & Marcus Mühlbauer & Amanda E. Starr & James Butcher & Turki Abujamel & Shelley A. Deeke & Annette Brandel & Hu Zhou & Shadi Shokralla & Mehrdad Hajibabaei & Ruth Si, 2016. "Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease," Nature Communications, Nature, vol. 7(1), pages 1-14, December.
    3. Yara Seif & Erol Kavvas & Jean-Christophe Lachance & James T. Yurkovich & Sean-Paul Nuccio & Xin Fang & Edward Catoiu & Manuela Raffatellu & Bernhard O. Palsson & Jonathan M. Monk, 2018. "Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Suzanne Devkota & Yunwei Wang & Mark W. Musch & Vanessa Leone & Hannah Fehlner-Peach & Anuradha Nadimpalli & Dionysios A. Antonopoulos & Bana Jabri & Eugene B. Chang, 2012. "Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice," Nature, Nature, vol. 487(7405), pages 104-108, July.
    5. Jane M. Natividad & Bruno Lamas & Hang Phuong Pham & Marie-Laure Michel & Dominique Rainteau & Chantal Bridonneau & Gregory da Costa & Johan van Hylckama Vlieg & Bruno Sovran & Celia Chamignon & Julie, 2018. "Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    6. Erica D. Sonnenburg & Samuel A. Smits & Mikhail Tikhonov & Steven K. Higginbottom & Ned S. Wingreen & Justin L. Sonnenburg, 2016. "Diet-induced extinctions in the gut microbiota compound over generations," Nature, Nature, vol. 529(7585), pages 212-215, January.
    7. Bryan K. Czyzewski & Da-Neng Wang, 2012. "Identification and characterization of a bacterial hydrosulphide ion channel," Nature, Nature, vol. 483(7390), pages 494-497, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. C. Ramaboli & S. Ocvirk & M. Khan Mirzaei & B. L. Eberhart & M. Valdivia-Garcia & A. Metwaly & K. Neuhaus & G. Barker & J. Ru & L. T. Nesengani & D. Mahdi-Joest & A. S. Wilson & S. K. Joni & D. C. , 2024. "Diet changes due to urbanization in South Africa are linked to microbiome and metabolome signatures of Westernization and colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Giuliano Bonanomi & Mohamed Idbella & Ahmed M. Abd-ElGawad, 2021. "Microbiota Management for Effective Disease Suppression: A Systematic Comparison between Soil and Mammals Gut," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    3. Sandra M. Holmberg & Rachel H. Feeney & Vishnu Prasoodanan P.K. & Fabiola Puértolas-Balint & Dhirendra K. Singh & Supapit Wongkuna & Lotte Zandbergen & Hans Hauner & Beate Brandl & Anni I. Nieminen & , 2024. "The gut commensal Blautia maintains colonic mucus function under low-fiber consumption through secretion of short-chain fatty acids," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Wen-Long Sun & Sha Hua & Xin-Yu Li & Liang Shen & Hao Wu & Hong-Fang Ji, 2023. "Microbially produced vitamin B12 contributes to the lipid-lowering effect of silymarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Wenjie Ma & Yiqing Wang & Long H. Nguyen & Raaj S. Mehta & Jane Ha & Amrisha Bhosle & Lauren J. Mclver & Mingyang Song & Clary B. Clish & Lisa L. Strate & Curtis Huttenhower & Andrew T. Chan, 2024. "Gut microbiome composition and metabolic activity in women with diverticulitis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Efrat Muller & Itamar Shiryan & Elhanan Borenstein, 2024. "Multi-omic integration of microbiome data for identifying disease-associated modules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Iris Chen & Yogeshwar D Kelkar & Yu Gu & Jie Zhou & Xing Qiu & Hulin Wu, 2017. "High-dimensional linear state space models for dynamic microbial interaction networks," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-20, November.
    8. Joanna F Dipnall & Julie A Pasco & Michael Berk & Lana J Williams & Seetal Dodd & Felice N Jacka & Denny Meyer, 2016. "Into the Bowels of Depression: Unravelling Medical Symptoms Associated with Depression by Applying Machine-Learning Techniques to a Community Based Population Sample," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    9. Robin D Couch & Allyson Dailey & Fatima Zaidi & Karl Navarro & Christopher B Forsyth & Ece Mutlu & Phillip A Engen & Ali Keshavarzian, 2015. "Alcohol Induced Alterations to the Human Fecal VOC Metabolome," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    10. Bo Tang & Li Tang & Shengpeng Li & Shuang Liu & Jialin He & Pan Li & Sumin Wang & Min Yang & Longhui Zhang & Yuanyuan Lei & Dianji Tu & Xuefeng Tang & Hua Hu & Qin Ouyang & Xia Chen & Shiming Yang, 2023. "Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Alice Risely & Kerstin Wilhelm & Tim Clutton-Brock & Marta B. Manser & Simone Sommer, 2021. "Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Hania M. Taha & Alexander N. Slade & Betty Schwartz & Anna E. Arthur, 2022. "A Case–Control Study Examining the Association of Fiber, Fruit, and Vegetable Intake and the Risk of Colorectal Cancer in a Palestinian Population," IJERPH, MDPI, vol. 19(12), pages 1-11, June.
    13. Sarah L Hagerty & Kent E Hutchison & Christopher A Lowry & Angela D Bryan, 2020. "An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    14. Lharbi Dridi & Fernando Altamura & Emmanuel Gonzalez & Olivia Lui & Ryszard Kubinski & Reilly Pidgeon & Adrian Montagut & Jasmine Chong & Jianguo Xia & Corinne F. Maurice & Bastien Castagner, 2023. "Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Muntsa Rocafort & David B. Gootenberg & Jesús M. Luévano & Jeffrey M. Paer & Matthew R. Hayward & Juliet T. Bramante & Musie S. Ghebremichael & Jiawu Xu & Zoe H. Rogers & Alexander R. Munoz & Samson O, 2024. "HIV-associated gut microbial alterations are dependent on host and geographic context," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Lidy M Pelsser & Klaas Frankena & Jan Toorman & Rob Rodrigues Pereira, 2017. "Diet and ADHD, Reviewing the Evidence: A Systematic Review of Meta-Analyses of Double-Blind Placebo-Controlled Trials Evaluating the Efficacy of Diet Interventions on the Behavior of Children with ADH," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-25, January.
    17. Kotaro Soeda & Takayoshi Sasako & Kenichiro Enooku & Naoto Kubota & Naoki Kobayashi & Yoshiko Matsumoto Ikushima & Motoharu Awazawa & Ryotaro Bouchi & Gotaro Toda & Tomoharu Yamada & Takuma Nakatsuka , 2023. "Gut insulin action protects from hepatocarcinogenesis in diabetic mice comorbid with nonalcoholic steatohepatitis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Alan C. Logan & Susan L. Prescott, 2017. "Astrofood, Priorities and Pandemics: Reflections of an Ultra-Processed Breakfast Program and Contemporary Dysbiotic Drift," Challenges, MDPI, vol. 8(2), pages 1-24, September.
    19. Lena Takayasu & Wataru Suda & Eiichiro Watanabe & Shinji Fukuda & Kageyasu Takanashi & Hiroshi Ohno & Misako Takayasu & Hideki Takayasu & Masahira Hattori, 2017. "A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-20, August.
    20. Michał Szklarz & Katarzyna Gontarz-Nowak & Wojciech Matuszewski & Elżbieta Bandurska-Stankiewicz, 2022. "Can Iron Play a Crucial Role in Maintaining Cardiovascular Health in the 21st Century?," IJERPH, MDPI, vol. 19(19), pages 1-32, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41008-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.