IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46101-5.html
   My bibliography  Save this article

Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios

Author

Listed:
  • Ken Oshiro

    (Kyoto University, C1-3, Kyotodaigaku-Katsura, Nishikyo-ku)

  • Shinichiro Fujimori

    (Kyoto University, C1-3, Kyotodaigaku-Katsura, Nishikyo-ku
    National Institute for Environmental Studies
    International Institute for Applied Systems Analysis (IIASA))

Abstract

Climate change mitigation generally require rapid decarbonization in the power sector, including phase-out of fossil fuel-fired generators. Given recent technological developments, co-firing of hydrogen or ammonia, could help decarbonize fossil-based generators, but little is known about how its effects would play out globally. Here, we explore this topic using an energy system model. The results indicate that hydrogen co-firing occurs solely in stringent mitigation like 1.5 °C scenarios, where around half of existing coal and gas power capacity can be retrofitted for hydrogen co-firing, reducing stranded capacity, mainly in the Organization for Economic Co-operation and Development (OECD) countries and Asia. However, electricity supply from co-firing generators is limited to about 1% of total electricity generation, because hydrogen co-firing is mainly used as a backup option to balance the variable renewable energies. The incremental fuel cost of hydrogen results in lower capacity factor of hydrogen co-fired generators, whereas low-carbon hydrogen contributes to reducing emission cost associated with carbon pricing. While hydrogen co-firing may play a role in balancing intermittency of variable renewable energies, it will not seriously delay the phase-out of fossil-based generators.

Suggested Citation

  • Ken Oshiro & Shinichiro Fujimori, 2024. "Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46101-5
    DOI: 10.1038/s41467-024-46101-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46101-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46101-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gunnar Luderer & Silvia Madeddu & Leon Merfort & Falko Ueckerdt & Michaja Pehl & Robert Pietzcker & Marianna Rottoli & Felix Schreyer & Nico Bauer & Lavinia Baumstark & Christoph Bertram & Alois Dirna, 2022. "Impact of declining renewable energy costs on electrification in low-emission scenarios," Nature Energy, Nature, vol. 7(1), pages 32-42, January.
    2. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    3. Yangsiyu Lu & Francois Cohen & Stephen M. Smith & Alexander Pfeiffer, 2022. "Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    5. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    6. Mileva, Ana & Johnston, Josiah & Nelson, James H. & Kammen, Daniel M., 2016. "Power system balancing for deep decarbonization of the electricity sector," Applied Energy, Elsevier, vol. 162(C), pages 1001-1009.
    7. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    8. Geoffrey J. Blanford, James H. Merrick, John E.T. Bistline, and David T. Young, 2018. "Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    9. Michael Jakob & Jan Christoph Steckel & Frank Jotzo & Benjamin K. Sovacool & Laura Cornelsen & Rohit Chandra & Ottmar Edenhofer & Chris Holden & Andreas Löschel & Ted Nace & Nick Robins & Jens Suedeku, 2020. "The future of coal in a carbon-constrained climate," Nature Climate Change, Nature, vol. 10(8), pages 704-707, August.
    10. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    11. Gunnar Luderer & Silvia Madeddu & Leon Merfort & Falko Ueckerdt & Michaja Pehl & Robert Pietzcker & Marianna Rottoli & Felix Schreyer & Nico Bauer & Lavinia Baumstark & Christoph Bertram & Alois Dirna, 2022. "Author Correction: Impact of declining renewable energy costs on electrification in low-emission scenarios," Nature Energy, Nature, vol. 7(4), pages 380-381, April.
    12. He, Gang & Lin, Jiang & Sifuentes, Froylan & Liu, Xu & Abhyankar, Nikit & Phadke, Amol, 2020. "Author Correction: Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt11x8b9hc, Department of Agricultural & Resource Economics, UC Berkeley.
    13. Gang He & Jiang Lin & Froylan Sifuentes & Xu Liu & Nikit Abhyankar & Amol Phadke, 2020. "Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    14. Shinichiro Fujimori & Ken Oshiro & Hiroto Shiraki & Tomoko Hasegawa, 2019. "Energy transformation cost for the Japanese mid-century strategy," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    15. Charlie Wilson & Céline Guivarch & Elmar Kriegler & Bas Ruijven & Detlef P. Vuuren & Volker Krey & Valeria Jana Schwanitz & Erica L. Thompson, 2021. "Evaluating process-based integrated assessment models of climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-22, May.
    16. Deane, J.P. & Chiodi, Alessandro & Gargiulo, Maurizio & Ó Gallachóir, Brian P., 2012. "Soft-linking of a power systems model to an energy systems model," Energy, Elsevier, vol. 42(1), pages 303-312.
    17. Rodrigues, Renato & Pietzcker, Robert & Fragkos, Panagiotis & Price, James & McDowall, Will & Siskos, Pelopidas & Fotiou, Theofano & Luderer, Gunnar & Capros, Pantelis, 2022. "Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe," Energy, Elsevier, vol. 239(PA).
    18. Joeri Rogelj & Gunnar Luderer & Robert C. Pietzcker & Elmar Kriegler & Michiel Schaeffer & Volker Krey & Keywan Riahi, 2015. "Energy system transformations for limiting end-of-century warming to below 1.5 °C," Nature Climate Change, Nature, vol. 5(6), pages 519-527, June.
    19. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    20. Gokul Iyer & Yang Ou & James Edmonds & Allen A. Fawcett & Nathan Hultman & James McFarland & Jay Fuhrman & Stephanie Waldhoff & Haewon McJeon, 2022. "Ratcheting of climate pledges needed to limit peak global warming," Nature Climate Change, Nature, vol. 12(12), pages 1129-1135, December.
    21. Ryna Yiyun Cui & Nathan Hultman & Morgan R. Edwards & Linlang He & Arijit Sen & Kavita Surana & Haewon McJeon & Gokul Iyer & Pralit Patel & Sha Yu & Ted Nace & Christine Shearer, 2019. "Quantifying operational lifetimes for coal power plants under the Paris goals," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    22. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    23. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    24. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    25. Krey, Volker & Guo, Fei & Kolp, Peter & Zhou, Wenji & Schaeffer, Roberto & Awasthy, Aayushi & Bertram, Christoph & de Boer, Harmen-Sytze & Fragkos, Panagiotis & Fujimori, Shinichiro & He, Chenmin & Iy, 2019. "Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models," Energy, Elsevier, vol. 172(C), pages 1254-1267.
    26. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    27. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    28. Gang He & Jiang Lin & Froylan Sifuentes & Xu Liu & Nikit Abhyankar & Amol Phadke, 2020. "Author Correction: Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    29. Castillo, Victhalia Zapata & Boer, Harmen-Sytze de & Muñoz, Raúl Maícas & Gernaat, David E.H.J. & Benders, René & van Vuuren, Detlef, 2022. "Future global electricity demand load curves," Energy, Elsevier, vol. 258(C).
    30. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    31. Mathijs Harmsen & Elmar Kriegler & Detlef van Vuuren & Kaj-Ivar van Der Wijst & Gunnar Luderer & Ryna Cui & Olivier Dessens & Laurent Drouet & Johannes Emmerling & Jennifer Morris & Florian Fosse & Di, 2021. "Integrated assessment model diagnostics: key indicators and model evolution," Post-Print hal-03216627, HAL.
    32. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    33. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    2. Hetong Wang & Kuishuang Feng & Peng Wang & Yuyao Yang & Laixiang Sun & Fan Yang & Wei-Qiang Chen & Yiyi Zhang & Jiashuo Li, 2023. "China’s electric vehicle and climate ambitions jeopardized by surging critical material prices," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    4. Morgenthaler, Simon & Dünzen, Justus & Stadler, Ingo & Witthaut, Dirk, 2021. "Three stages in the co-transformation of the energy and mobility sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Mark M. Dekker & Vassilis Daioglou & Robert Pietzcker & Renato Rodrigues & Harmen-Sytze Boer & Francesco Dalla Longa & Laurent Drouet & Johannes Emmerling & Amir Fattahi & Theofano Fotiou & Panagiotis, 2023. "Identifying energy model fingerprints in mitigation scenarios," Nature Energy, Nature, vol. 8(12), pages 1395-1404, December.
    6. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    7. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Jafari, Mehdi & Korpås, Magnus & Botterud, Audun, 2020. "Power system decarbonization: Impacts of energy storage duration and interannual renewables variability," Renewable Energy, Elsevier, vol. 156(C), pages 1171-1185.
    9. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    10. Dongsheng Zheng & Dan Tong & Steven J. Davis & Yue Qin & Yang Liu & Ruochong Xu & Jin Yang & Xizhe Yan & Guannan Geng & Huizheng Che & Qiang Zhang, 2024. "Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980–2022," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Nishiura, Osamu & Krey, Volker & Fricko, Oliver & van Ruijven, Bas & Fujimori, Shinichiro, 2024. "Integration of energy system and computable general equilibrium models: An approach complementing energy and economic representations for mitigation analysis," Energy, Elsevier, vol. 296(C).
    12. Jimenez, I. Sanchez & Ribó-Pérez, D. & Cvetkovic, M. & Kochems, J. & Schimeczek, C. & de Vries, L.J., 2024. "Can an energy only market enable resource adequacy in a decarbonized power system? A co-simulation with two agent-based-models," Applied Energy, Elsevier, vol. 360(C).
    13. Lugovoy, Oleg & Gao, Shuo & Gao, Ji & Jiang, Kejun, 2021. "Feasibility study of China's electric power sector transition to zero emissions by 2050," Energy Economics, Elsevier, vol. 96(C).
    14. Choo, Hyunwoong & Kim, Yong-Gun & Kim, Dongwoo, 2024. "Power sector carbon reduction review for South Korea in 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    15. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    17. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    18. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    19. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    20. Natalia Gonzalez & Paul Serna-Torre & Pedro A. Sánchez-Pérez & Ryan Davidson & Bryan Murray & Martin Staadecker & Julia Szinai & Rachel Wei & Daniel M. Kammen & Deborah A. Sunter & Patricia Hidalgo-Go, 2024. "Offshore wind and wave energy can reduce total installed capacity required in zero-emissions grids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46101-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.