IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45706-0.html
   My bibliography  Save this article

Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing

Author

Listed:
  • Nicolas Ledru

    (Washington University in St. Louis School of Medicine)

  • Parker C. Wilson

    (Washington University in St. Louis)

  • Yoshiharu Muto

    (Washington University in St. Louis School of Medicine)

  • Yasuhiro Yoshimura

    (Washington University in St. Louis School of Medicine)

  • Haojia Wu

    (Washington University in St. Louis School of Medicine)

  • Dian Li

    (Washington University in St. Louis School of Medicine)

  • Amish Asthana

    (Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine)

  • Stefan G. Tullius

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Sushrut S. Waikar

    (Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center)

  • Giuseppe Orlando

    (Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine)

  • Benjamin D. Humphreys

    (Washington University in St. Louis School of Medicine
    Washington University in St. Louis School of Medicine)

Abstract

Renal proximal tubule epithelial cells have considerable intrinsic repair capacity following injury. However, a fraction of injured proximal tubule cells fails to undergo normal repair and assumes a proinflammatory and profibrotic phenotype that may promote fibrosis and chronic kidney disease. The healthy to failed repair change is marked by cell state-specific transcriptomic and epigenomic changes. Single nucleus joint RNA- and ATAC-seq sequencing offers an opportunity to study the gene regulatory networks underpinning these changes in order to identify key regulatory drivers. We develop a regularized regression approach to construct genome-wide parametric gene regulatory networks using multiomic datasets. We generate a single nucleus multiomic dataset from seven adult human kidney samples and apply our method to study drivers of a failed injury response associated with kidney disease. We demonstrate that our approach is a highly effective tool for predicting key cis- and trans-regulatory elements underpinning the healthy to failed repair transition and use it to identify NFAT5 as a driver of the maladaptive proximal tubule state.

Suggested Citation

  • Nicolas Ledru & Parker C. Wilson & Yoshiharu Muto & Yasuhiro Yoshimura & Haojia Wu & Dian Li & Amish Asthana & Stefan G. Tullius & Sushrut S. Waikar & Giuseppe Orlando & Benjamin D. Humphreys, 2024. "Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45706-0
    DOI: 10.1038/s41467-024-45706-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45706-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45706-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Zhen Miao & Michael S. Balzer & Ziyuan Ma & Hongbo Liu & Junnan Wu & Rojesh Shrestha & Tamas Aranyi & Amy Kwan & Ayano Kondo & Marco Pontoglio & Junhyong Kim & Mingyao Li & Klaus H. Kaestner & Katalin, 2021. "Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Kenji Kamimoto & Blerta Stringa & Christy M. Hoffmann & Kunal Jindal & Lilianna Solnica-Krezel & Samantha A. Morris, 2023. "Dissecting cell identity via network inference and in silico gene perturbation," Nature, Nature, vol. 614(7949), pages 742-751, February.
    5. David DeTomaso & Matthew G. Jones & Meena Subramaniam & Tal Ashuach & Chun J. Ye & Nir Yosef, 2019. "Functional interpretation of single cell similarity maps," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Blue B. Lake & Rajasree Menon & Seth Winfree & Qiwen Hu & Ricardo Melo Ferreira & Kian Kalhor & Daria Barwinska & Edgar A. Otto & Michael Ferkowicz & Dinh Diep & Nongluk Plongthongkum & Amanda Knoten , 2023. "An atlas of healthy and injured cell states and niches in the human kidney," Nature, Nature, vol. 619(7970), pages 585-594, July.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Lei Chen & Shirley Luo & Abigail Dupre & Roshan P. Vasoya & Aditya Parthasarathy & Rohit Aita & Raj Malhotra & Joseph Hur & Natalie H. Toke & Eric Chiles & Min Yang & Weihuan Cao & Juan Flores & Chris, 2021. "The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Yoshiharu Muto & Eryn E. Dixon & Yasuhiro Yoshimura & Haojia Wu & Kohei Omachi & Nicolas Ledru & Parker C. Wilson & Andrew J. King & N. Eric Olson & Marvin G. Gunawan & Jay J. Kuo & Jennifer H. Cox & , 2022. "Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Yoshiharu Muto & Parker C. Wilson & Nicolas Ledru & Haojia Wu & Henrik Dimke & Sushrut S. Waikar & Benjamin D. Humphreys, 2021. "Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    5. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    6. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    7. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    8. Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
    9. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    10. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    11. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    12. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    13. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    14. repec:jss:jstsof:33:i01 is not listed on IDEAS
    15. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    16. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
    17. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    18. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    19. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    20. Yu-Min Yen, 2010. "A Note on Sparse Minimum Variance Portfolios and Coordinate-Wise Descent Algorithms," Papers 1005.5082, arXiv.org, revised Sep 2013.
    21. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45706-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.