IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22368-w.html
   My bibliography  Save this article

Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney

Author

Listed:
  • Yoshiharu Muto

    (Washington University in St. Louis)

  • Parker C. Wilson

    (Washington University in St. Louis)

  • Nicolas Ledru

    (Washington University in St. Louis)

  • Haojia Wu

    (Washington University in St. Louis)

  • Henrik Dimke

    (Institute of Molecular Medicine, University of Southern Denmark
    Odense University Hospital)

  • Sushrut S. Waikar

    (Boston University School of Medicine and Boston Medical Center)

  • Benjamin D. Humphreys

    (Washington University in St. Louis
    Washington University in St. Louis)

Abstract

The integration of single cell transcriptome and chromatin accessibility datasets enables a deeper understanding of cell heterogeneity. We performed single nucleus ATAC (snATAC-seq) and RNA (snRNA-seq) sequencing to generate paired, cell-type-specific chromatin accessibility and transcriptional profiles of the adult human kidney. We demonstrate that snATAC-seq is comparable to snRNA-seq in the assignment of cell identity and can further refine our understanding of functional heterogeneity in the nephron. The majority of differentially accessible chromatin regions are localized to promoters and a significant proportion are closely associated with differentially expressed genes. Cell-type-specific enrichment of transcription factor binding motifs implicates the activation of NF-κB that promotes VCAM1 expression and drives transition between a subpopulation of proximal tubule epithelial cells. Our multi-omics approach improves the ability to detect unique cell states within the kidney and redefines cellular heterogeneity in the proximal tubule and thick ascending limb.

Suggested Citation

  • Yoshiharu Muto & Parker C. Wilson & Nicolas Ledru & Haojia Wu & Henrik Dimke & Sushrut S. Waikar & Benjamin D. Humphreys, 2021. "Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22368-w
    DOI: 10.1038/s41467-021-22368-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22368-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22368-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caitriona M. McEvoy & Julia M. Murphy & Lin Zhang & Sergi Clotet-Freixas & Jessica A. Mathews & James An & Mehran Karimzadeh & Delaram Pouyabahar & Shenghui Su & Olga Zaslaver & Hannes Röst & Rangi Ar, 2022. "Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Akihiko Fukagawa & Natsuko Hama & Yasushi Totoki & Hiromi Nakamura & Yasuhito Arai & Mihoko Saito-Adachi & Akiko Maeshima & Yoshiyuki Matsui & Shinichi Yachida & Tetsuo Ushiku & Tatsuhiro Shibata, 2023. "Genomic and epigenomic integrative subtypes of renal cell carcinoma in a Japanese cohort," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Zhenchao Tang & Guanxing Chen & Shouzhi Chen & Jianhua Yao & Linlin You & Calvin Yu-Chian Chen, 2024. "Modal-nexus auto-encoder for multi-modality cellular data integration and imputation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Nicolas Ledru & Parker C. Wilson & Yoshiharu Muto & Yasuhiro Yoshimura & Haojia Wu & Dian Li & Amish Asthana & Stefan G. Tullius & Sushrut S. Waikar & Giuseppe Orlando & Benjamin D. Humphreys, 2024. "Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22368-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.