IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45382-0.html
   My bibliography  Save this article

Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types

Author

Listed:
  • Kadir Buyukcelebi

    (Feinberg School of Medicine at Northwestern University)

  • Alexander J. Duval

    (Feinberg School of Medicine at Northwestern University)

  • Fatih Abdula

    (Feinberg School of Medicine at Northwestern University)

  • Hoda Elkafas

    (Feinberg School of Medicine at Northwestern University)

  • Fidan Seker-Polat

    (Feinberg School of Medicine at Northwestern University)

  • Mazhar Adli

    (Feinberg School of Medicine at Northwestern University)

Abstract

Uterine fibroids (UF), that can disrupt normal uterine function and cause significant physical and psychological health problems, are observed in nearly 70% of women of reproductive age. Although heritable genetics is a significant risk factor, specific genetic variations and gene targets causally associated with UF are poorly understood. Here, we performed a meta-analysis on existing fibroid genome-wide association studies (GWAS) and integrated the identified risk loci and potentially causal single nucleotide polymorphisms (SNPs) with epigenomics, transcriptomics, 3D chromatin organization from diverse cell types as well as primary UF patient’s samples. This integrative analysis identifies 24 UF-associated risk loci that potentially target 394 genes, of which 168 are differentially expressed in UF tumors. Critically, integrating this data with single-cell gene expression data from UF patients reveales the causal cell types with aberrant expression of these target genes. Lastly, CRISPR-based epigenetic repression (dCas9-KRAB) or activation (dCas9-p300) in a UF disease-relevant cell type further refines and narrows down the potential gene targets. Our findings and the methodological approach indicate the effectiveness of integrating multi-omics data with locus-specific epigenetic editing approaches for identifying gene- and celt type-targets of disease-relevant risk loci.

Suggested Citation

  • Kadir Buyukcelebi & Alexander J. Duval & Fatih Abdula & Hoda Elkafas & Fidan Seker-Polat & Mazhar Adli, 2024. "Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45382-0
    DOI: 10.1038/s41467-024-45382-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45382-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45382-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mthabisi B. Moyo & J. Brandon Parker & Debabrata Chakravarti, 2020. "Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    2. Thorunn Rafnar & Bjarni Gunnarsson & Olafur A. Stefansson & Patrick Sulem & Andres Ingason & Michael L. Frigge & Lilja Stefansdottir & Jon K. Sigurdsson & Vinicius Tragante & Valgerdur Steinthorsdotti, 2018. "Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Kadir Buyukcelebi & Xintong Chen & Fatih Abdula & Hoda Elkafas & Alexander James Duval & Harun Ozturk & Fidan Seker-Polat & Qiushi Jin & Ping Yin & Yue Feng & Serdar E. Bulun & Jian Jun Wei & Feng Yue, 2023. "Engineered MED12 mutations drive leiomyoma-like transcriptional and metabolic programs by altering the 3D genome compartmentalization," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. C. S. Gallagher & N. Mäkinen & H. R. Harris & N. Rahmioglu & O. Uimari & J. P. Cook & N. Shigesi & T. Ferreira & D. R. Velez-Edwards & T. L. Edwards & S. Mortlock & Z. Ruhioglu & F. Day & C. M. Becker, 2019. "Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Benjamin B. Sun & Joseph C. Maranville & James E. Peters & David Stacey & James R. Staley & James Blackshaw & Stephen Burgess & Tao Jiang & Ellie Paige & Praveen Surendran & Clare Oliver-Williams & Mi, 2018. "Genomic atlas of the human plasma proteome," Nature, Nature, vol. 558(7708), pages 73-79, June.
    6. Kyoko Watanabe & Erdogan Taskesen & Arjen Bochoven & Danielle Posthuma, 2017. "Functional mapping and annotation of genetic associations with FUMA," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    7. Jamunarani Veeraraghavan & Ying Tan & Xi-Xi Cao & Jin Ah Kim & Xian Wang & Gary C Chamness & Sourindra N Maiti & Laurence J N Cooper & Dean P Edwards & Alejandro Contreras & Susan G Hilsenbeck & Eric , 2014. "Recurrent ESR1–CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Danni A. Gadd & Robert F. Hillary & Daniel L. McCartney & Liu Shi & Aleks Stolicyn & Neil A. Robertson & Rosie M. Walker & Robert I. McGeachan & Archie Campbell & Shen Xueyi & Miruna C. Barbu & Claire, 2022. "Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Yuki Ishikawa & Nao Tanaka & Yoshihide Asano & Masanari Kodera & Yuichiro Shirai & Mitsuteru Akahoshi & Minoru Hasegawa & Takashi Matsushita & Kazuyoshi Saito & Sei-ichiro Motegi & Hajime Yoshifuji & , 2024. "GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Ashley Budu-Aggrey & Anna Kilanowski & Maria K. Sobczyk & Suyash S. Shringarpure & Ruth Mitchell & Kadri Reis & Anu Reigo & Reedik Mägi & Mari Nelis & Nao Tanaka & Ben M. Brumpton & Laurent F. Thomas , 2023. "European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Yihao Lu & Meritxell Oliva & Brandon L. Pierce & Jin Liu & Lin S. Chen, 2024. "Integrative cross-omics and cross-context analysis elucidates molecular links underlying genetic effects on complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Parsa Akbari & Dragana Vuckovic & Luca Stefanucci & Tao Jiang & Kousik Kundu & Roman Kreuzhuber & Erik L. Bao & Janine H. Collins & Kate Downes & Luigi Grassi & Jose A. Guerrero & Stephen Kaptoge & Ju, 2023. "A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Shahram Bahrami & Kaja Nordengen & Jaroslav Rokicki & Alexey A. Shadrin & Zillur Rahman & Olav B. Smeland & Piotr P. Jaholkowski & Nadine Parker & Pravesh Parekh & Kevin S. O’Connell & Torbjørn Elvsås, 2024. "The genetic landscape of basal ganglia and implications for common brain disorders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Marta Alcalde-Herraiz & JunQing Xie & Danielle Newby & Clara Prats & Dipender Gill & María Gordillo-Marañón & Daniel Prieto-Alhambra & Martí Català & Albert Prats-Uribe, 2024. "Effect of genetically predicted sclerostin on cardiovascular biomarkers, risk factors, and disease outcomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Bhuwan Khatri & Kandice L. Tessneer & Astrid Rasmussen & Farhang Aghakhanian & Tove Ragna Reksten & Adam Adler & Ilias Alevizos & Juan-Manuel Anaya & Lara A. Aqrawi & Eva Baecklund & Johan G. Brun & S, 2022. "Genome-wide association study identifies Sjögren’s risk loci with functional implications in immune and glandular cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Mathias Seviiri & Matthew H. Law & Jue-Sheng Ong & Puya Gharahkhani & Pierre Fontanillas & Catherine M. Olsen & David C. Whiteman & Stuart MacGregor, 2022. "A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Elena V. Feofanova & Michael R. Brown & Taryn Alkis & Astrid M. Manuel & Xihao Li & Usman A. Tahir & Zilin Li & Kevin M. Mendez & Rachel S. Kelly & Qibin Qi & Han Chen & Martin G. Larson & Rozenn N. L, 2023. "Whole-Genome Sequencing Analysis of Human Metabolome in Multi-Ethnic Populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Paul R. H. J. Timmers & James F. Wilson & Peter K. Joshi & Joris Deelen, 2020. "Multivariate genomic scan implicates novel loci and haem metabolism in human ageing," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    14. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Wendiao Zhang & Ming Zhang & Zhenhong Xu & Hongye Yan & Huimin Wang & Jiamei Jiang & Juan Wan & Beisha Tang & Chunyu Liu & Chao Chen & Qingtuan Meng, 2023. "Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Isabelle Austin-Zimmerman & Daniel F. Levey & Olga Giannakopoulou & Joseph D. Deak & Marco Galimberti & Keyrun Adhikari & Hang Zhou & Spiros Denaxas & Haritz Irizar & Karoline Kuchenbaecker & Andrew M, 2023. "Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45382-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.