IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44996-8.html
   My bibliography  Save this article

Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts

Author

Listed:
  • Charlotte Cautereels

    (VIB-KU Leuven Center for Microbiology
    KU Leuven)

  • Jolien Smets

    (VIB-KU Leuven Center for Microbiology
    KU Leuven)

  • Jonas De Saeger

    (Ghent University
    VIB Center for Plant Systems Biology)

  • Lloyd Cool

    (VIB-KU Leuven Center for Microbiology
    KU Leuven
    KU Leuven)

  • Yanmei Zhu

    (VIB-KU Leuven Center for Microbiology
    KU Leuven)

  • Anna Zimmermann

    (VIB-KU Leuven Center for Microbiology
    KU Leuven)

  • Jan Steensels

    (VIB-KU Leuven Center for Microbiology
    KU Leuven)

  • Anton Gorkovskiy

    (VIB-KU Leuven Center for Microbiology
    KU Leuven)

  • Thomas B. Jacobs

    (Ghent University
    VIB Center for Plant Systems Biology)

  • Kevin J. Verstrepen

    (VIB-KU Leuven Center for Microbiology
    KU Leuven)

Abstract

Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.

Suggested Citation

  • Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44996-8
    DOI: 10.1038/s41467-024-44996-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44996-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44996-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francesco Trovato & Riccardo Parra & Enrico Pracucci & Silvia Landi & Olga Cozzolino & Gabriele Nardi & Federica Cruciani & Vinoshene Pillai & Laura Mosti & Andrzej W. Cwetsch & Laura Cancedda & Laura, 2020. "Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Miguel Vizoso & Colin E. J. Pritchard & Lorenzo Bombardelli & Bram van den Broek & Paul Krimpenfort & Roderick L. Beijersbergen & Kees Jalink & Jacco van Rheenen, 2022. "A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Gita Naseri & Mattheos A. G. Koffas, 2020. "Application of combinatorial optimization strategies in synthetic biology," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Camila Robles-Oteiza & Sarah Taylor & Travis Yates & Michelle Cicchini & Brian Lauderback & Christopher R. Cashman & Aurora A. Burds & Monte M. Winslow & Tyler Jacks & David M. Feldser, 2015. "Recombinase-based conditional and reversible gene regulation via XTR alleles," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    5. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    6. Dariusz R. Kutyna & Cristobal A. Onetto & Thomas C. Williams & Hugh D. Goold & Ian T. Paulsen & Isak S. Pretorius & Daniel L. Johnson & Anthony R. Borneman, 2022. "Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Laura Prochazka & Bartolomeo Angelici & Benjamin Haefliger & Yaakov Benenson, 2014. "Highly modular bow-tie gene circuits with programmable dynamic behaviour," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    8. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    9. Kumi Morikawa & Kazuhiro Furuhashi & Carmen Sena-Tomas & Alvaro L. Garcia-Garcia & Ramsey Bekdash & Alison D. Klein & Nicholas Gallerani & Hannah E. Yamamoto & Seon-Hye E. Park & Grant S. Collins & Fu, 2020. "Photoactivatable Cre recombinase 3.0 for in vivo mouse applications," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    10. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    11. Karel Miettinen & Nattawat Leelahakorn & Aldo Almeida & Yong Zhao & Lukas R. Hansen & Iben E. Nikolajsen & Jens B. Andersen & Michael Givskov & Dan Staerk & Søren Bak & Sotirios C. Kampranis, 2022. "A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Feng Guo & Deshmukh N. Gopaul & Gregory D. Van Duyne, 1997. "Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse," Nature, Nature, vol. 389(6646), pages 40-46, September.
    13. Tackhoon Kim & Benjamin Weinberg & Wilson Wong & Timothy K. Lu, 2021. "Scalable recombinase-based gene expression cascades," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Michael B. Sheets & Nathan Tague & Mary J. Dunlop, 2023. "An optogenetic toolkit for light-inducible antibiotic resistance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Hyunjin Jung & Seong-Wook Kim & Minsoo Kim & Jongryul Hong & Daseuli Yu & Ji Hye Kim & Yunju Lee & Sungsoo Kim & Doyeon Woo & Hee-Sup Shin & Byung Ouk Park & Won Do Heo, 2019. "Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    16. Huiming Zhang & Xian Fu & Xuemei Gong & Yun Wang & Haolin Zhang & Yu Zhao & Yue Shen, 2022. "Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Benjamin H. Weinberg & Jang Hwan Cho & Yash Agarwal & N. T. Hang Pham & Leidy D. Caraballo & Maciej Walkosz & Charina Ortega & Micaela Trexler & Nathan Tague & Billy Law & William K. J. Benman & Justi, 2019. "High-performance chemical- and light-inducible recombinases in mammalian cells and mice," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    18. Nicole M. Wong & Elizabeth Frias & Frederic D. Sigoillot & Justin H. Letendre & Marc Hild & Wilson W. Wong, 2021. "Engineering digitizer circuits for chemical and genetic screens in human cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. Jiali Wu & Meiyan Wang & Xueping Yang & Chengwei Yi & Jian Jiang & Yuanhuan Yu & Haifeng Ye, 2020. "A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    20. Felix Lansing & Liliya Mukhametzyanova & Teresa Rojo-Romanos & Kentaro Iwasawa & Masaki Kimura & Maciej Paszkowski-Rogacz & Janet Karpinski & Tobias Grass & Jan Sonntag & Paul Martin Schneider & Ceren, 2022. "Correction of a Factor VIII genomic inversion with designer-recombinases," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte Cautereels & Jolien Smets & Peter Bircham & Dries De Ruysscher & Anna Zimmermann & Peter De Rijk & Jan Steensels & Anton Gorkovskiy & Joleen Masschelein & Kevin J. Verstrepen, 2024. "Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Deqiang Kong & Yang Zhou & Yu Wei & Xinyi Wang & Qin Huang & Xianyun Gao & Hang Wan & Mengyao Liu & Liping Kang & Guiling Yu & Jianli Yin & Ningzi Guan & Haifeng Ye, 2024. "Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    5. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    6. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    7. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    9. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    10. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    12. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    13. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    14. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    16. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    18. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    19. Lisa Maria Riedmayr & Klara Sonnie Hinrichsmeyer & Stefan Bernhard Thalhammer & David Manuel Mittas & Nina Karguth & Dina Yehia Otify & Sybille Böhm & Valentin Johannes Weber & Michael David Bartosche, 2023. "mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Vayu Maini Rekdal & Casper R. B. Luijt & Yan Chen & Ramu Kakumanu & Edward E. K. Baidoo & Christopher J. Petzold & Pablo Cruz-Morales & Jay D. Keasling, 2024. "Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44996-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.