IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v389y1997i6646d10.1038_37925.html
   My bibliography  Save this article

Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse

Author

Listed:
  • Feng Guo

    (University of Pennsylvania School of Medicine)

  • Deshmukh N. Gopaul

    (University of Pennsylvania School of Medicine)

  • Gregory D. Van Duyne

    (University of Pennsylvania School of Medicine)

Abstract

During site-specific DNA recombination, which brings about genetic rearrangement in processes such as viral integration and excision and chromosomal segregation, recombinase enzymes recognize specific DNA sequences and catalyse the reciprocal exchange of DNA strands between these sites. The bacteriophage recombinase Cre catalyses site-specific recombination between two 34-base-pair loxP sites. The crystal structure at 2.4 Å resolution of Cre bound to a loxP substrate reveals an intermediate in the recombination reaction, in which a Cre molecule has cleaved the substrate to form a covalent 3′-phosphotyrosine linkage with the DNA. Four recombinases and two loxP sites form a synapsed structure in which the DNA resembles models of four-way Holliday-junction intermediates. The Cre–loxP complex challenges models of site-specific recombination that require large changes in quaternary structure. Subtle allosteric changes at the carboxy termini of the Cre subunits may instead coordinate the cleavage and strand-exchange reactions.

Suggested Citation

  • Feng Guo & Deshmukh N. Gopaul & Gregory D. Van Duyne, 1997. "Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse," Nature, Nature, vol. 389(6646), pages 40-46, September.
  • Handle: RePEc:nat:nature:v:389:y:1997:i:6646:d:10.1038_37925
    DOI: 10.1038/37925
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/37925
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/37925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiming Zhang & Xian Fu & Xuemei Gong & Yun Wang & Haolin Zhang & Yu Zhao & Yue Shen, 2022. "Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:389:y:1997:i:6646:d:10.1038_37925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.