IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17530-9.html
   My bibliography  Save this article

A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice

Author

Listed:
  • Jiali Wu

    (East China Normal University)

  • Meiyan Wang

    (East China Normal University)

  • Xueping Yang

    (East China Normal University)

  • Chengwei Yi

    (East China Normal University)

  • Jian Jiang

    (East China Normal University)

  • Yuanhuan Yu

    (East China Normal University)

  • Haifeng Ye

    (East China Normal University)

Abstract

The Cre-loxP recombination system is a powerful tool for genetic manipulation. However, there are widely recognized limitations with chemically inducible Cre-loxP systems, and the UV and blue-light induced systems have phototoxicity and minimal capacity for deep tissue penetration. Here, we develop a far-red light-induced split Cre-loxP system (FISC system) based on a bacteriophytochrome optogenetic system and split-Cre recombinase, enabling optogenetical regulation of genome engineering in vivo solely by utilizing a far-red light (FRL). The FISC system exhibits low background and no detectable photocytotoxicity, while offering efficient FRL-induced DNA recombination. Our in vivo studies showcase the strong organ-penetration capacity of FISC system, markedly outperforming two blue-light-based Cre systems for recombination induction in the liver. Demonstrating its strong clinical relevance, we successfully deploy a FISC system using adeno-associated virus (AAV) delivery. Thus, the FISC system expands the optogenetic toolbox for DNA recombination to achieve spatiotemporally controlled, non-invasive genome engineering in living systems.

Suggested Citation

  • Jiali Wu & Meiyan Wang & Xueping Yang & Chengwei Yi & Jian Jiang & Yuanhuan Yu & Haifeng Ye, 2020. "A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17530-9
    DOI: 10.1038/s41467-020-17530-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17530-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17530-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charlotte Cautereels & Jolien Smets & Peter Bircham & Dries De Ruysscher & Anna Zimmermann & Peter De Rijk & Jan Steensels & Anton Gorkovskiy & Joleen Masschelein & Kevin J. Verstrepen, 2024. "Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17530-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.