IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33863-z.html
   My bibliography  Save this article

A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing

Author

Listed:
  • Miguel Vizoso

    (Oncode Institute, Netherlands Cancer Institute)

  • Colin E. J. Pritchard

    (The Netherlands Cancer Institute)

  • Lorenzo Bombardelli

    (Netherlands Cancer Institute)

  • Bram van den Broek

    (The Netherlands Cancer Institute
    BioImaging Facility, The Netherlands Cancer Institute)

  • Paul Krimpenfort

    (The Netherlands Cancer Institute)

  • Roderick L. Beijersbergen

    (Netherlands Cancer Institute
    The Netherlands Cancer Institute)

  • Kees Jalink

    (The Netherlands Cancer Institute
    University of Amsterdam)

  • Jacco van Rheenen

    (Oncode Institute, Netherlands Cancer Institute)

Abstract

The experimental need to engineer the genome both in time and space, has led to the development of several photoactivatable Cre recombinase systems. However, the combination of inefficient and non-intentional background recombination has prevented thus far the wide application of these systems in biological and biomedical research. Here, we engineer an optimized photoactivatable Cre recombinase system that we refer to as doxycycline- and light-inducible Cre recombinase (DiLiCre). Following extensive characterization in cancer cell and organoid systems, we generate a DiLiCre mouse line, and illustrated the biological applicability of DiLiCre for light-induced mutagenesis in vivo and positional cell-tracing by intravital microscopy. These experiments illustrate how newly formed HrasV12 mutant cells follow an unnatural movement towards the interfollicular dermis. Together, we develop an efficient photoactivatable Cre recombinase mouse model and illustrate how this model is a powerful genome-editing tool for biological and biomedical research.

Suggested Citation

  • Miguel Vizoso & Colin E. J. Pritchard & Lorenzo Bombardelli & Bram van den Broek & Paul Krimpenfort & Roderick L. Beijersbergen & Kees Jalink & Jacco van Rheenen, 2022. "A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33863-z
    DOI: 10.1038/s41467-022-33863-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33863-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33863-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fuun Kawano & Hideyuki Suzuki & Akihiro Furuya & Moritoshi Sato, 2015. "Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    2. Kumi Morikawa & Kazuhiro Furuhashi & Carmen Sena-Tomas & Alvaro L. Garcia-Garcia & Ramsey Bekdash & Alison D. Klein & Nicholas Gallerani & Hannah E. Yamamoto & Seon-Hye E. Park & Grant S. Collins & Fu, 2020. "Photoactivatable Cre recombinase 3.0 for in vivo mouse applications," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Stefano Annunziato & Julian R. de Ruiter & Linda Henneman & Chiara S. Brambillasca & Catrin Lutz & François Vaillant & Federica Ferrante & Anne Paulien Drenth & Eline van der Burg & Bjørn Siteur & Bas, 2019. "Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Deqiang Kong & Yang Zhou & Yu Wei & Xinyi Wang & Qin Huang & Xianyun Gao & Hang Wan & Mengyao Liu & Liping Kang & Guiling Yu & Jianli Yin & Ningzi Guan & Haifeng Ye, 2024. "Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Dennis Vettkötter & Martin Schneider & Brady D. Goulden & Holger Dill & Jana Liewald & Sandra Zeiler & Julia Guldan & Yilmaz Arda Ateş & Shigeki Watanabe & Alexander Gottschalk, 2022. "Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Julia M. Houthuijzen & Roebi Bruijn & Eline Burg & Anne Paulien Drenth & Ellen Wientjens & Tamara Filipovic & Esme Bullock & Chiara S. Brambillasca & Emilia M. Pulver & Marja Nieuwland & Iris Rink & F, 2023. "CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Riccardo De Santis & Fred Etoc & Edwin A. Rosado-Olivieri & Ali H. Brivanlou, 2021. "Self-organization of human dorsal-ventral forebrain structures by light induced SHH," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Jeonghye Yu & Jongpil Shin & Jihwan Yu & Jihye Kim & Daseuli Yu & Won Do Heo, 2024. "Programmable RNA base editing with photoactivatable CRISPR-Cas13," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Miaowei Mao & Yajie Qian & Wenyao Zhang & Siyu Zhou & Zefeng Wang & Xianjun Chen & Yi Yang, 2023. "Controlling protein stability with SULI, a highly sensitive tag for stabilization upon light induction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Dario Zimmerli & Chiara S. Brambillasca & Francien Talens & Jinhyuk Bhin & Renske Linstra & Lou Romanens & Arkajyoti Bhattacharya & Stacey E. P. Joosten & Ana Moises Silva & Nuno Padrao & Max D. Welle, 2022. "MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33863-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.