IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37011-z.html
   My bibliography  Save this article

Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells

Author

Listed:
  • Jinfa Chang

    (University of Central Florida)

  • Guanzhi Wang

    (University of Central Florida
    University of Central Florida)

  • Xiaoxia Chang

    (University of Delaware, Newark)

  • Zhenzhong Yang

    (Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory)

  • Han Wang

    (Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory)

  • Boyang Li

    (University of Pittsburgh)

  • Wei Zhang

    (University of Central Florida
    University of Central Florida)

  • Libor Kovarik

    (Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory)

  • Yingge Du

    (Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory)

  • Nina Orlovskaya

    (University of Central Florida
    University of Central Florida)

  • Bingjun Xu

    (University of Delaware, Newark)

  • Guofeng Wang

    (University of Pittsburgh)

  • Yang Yang

    (University of Central Florida
    University of Central Florida
    University of Central Florida
    University of Central Florida)

Abstract

Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials’ physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm−2 in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies.

Suggested Citation

  • Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37011-z
    DOI: 10.1038/s41467-023-37011-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37011-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37011-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maorong Wen & Yunlei Cao & Bin Wu & Taoran Xiao & Ruiyu Cao & Qian Wang & Xiwei Liu & Hongjuan Xue & Yang Yu & Jialing Lin & Chenqi Xu & Jie Xu & Bo OuYang, 2021. "PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Shengwen Liu & Chenzhao Li & Michael J. Zachman & Yachao Zeng & Haoran Yu & Boyang Li & Maoyu Wang & Jonathan Braaten & Jiawei Liu & Harry M. Meyer & Marcos Lucero & A. Jeremy Kropf & E. Ercan Alp & Q, 2022. "Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells," Nature Energy, Nature, vol. 7(7), pages 652-663, July.
    3. Mingchuan Luo & Zhonglong Zhao & Yelong Zhang & Yingjun Sun & Yi Xing & Fan Lv & Yong Yang & Xu Zhang & Sooyeon Hwang & Yingnan Qin & Jing-Yuan Ma & Fei Lin & Dong Su & Gang Lu & Shaojun Guo, 2019. "PdMo bimetallene for oxygen reduction catalysis," Nature, Nature, vol. 574(7776), pages 81-85, October.
    4. Kara Strickland & Elise Miner & Qingying Jia & Urszula Tylus & Nagappan Ramaswamy & Wentao Liang & Moulay-Tahar Sougrati & Frédéric Jaouen & Sanjeev Mukerjee, 2015. "Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    5. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    6. Jitendra N. Tiwari & Siraj Sultan & Chang Woo Myung & Taeseung Yoon & Nannan Li & Miran Ha & Ahmad M. Harzandi & Hyo Ju Park & Dong Yeon Kim & S. Selva Chandrasekaran & Wang Geun Lee & Varun Vij & Hoj, 2018. "Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity," Nature Energy, Nature, vol. 3(9), pages 773-782, September.
    7. Jing Liu & Menggai Jiao & Lanlu Lu & Heather M. Barkholtz & Yuping Li & Ying Wang & Luhua Jiang & Zhijian Wu & Di-jia Liu & Lin Zhuang & Chao Ma & Jie Zeng & Bingsen Zhang & Dangsheng Su & Ping Song &, 2017. "High performance platinum single atom electrocatalyst for oxygen reduction reaction," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    8. Jing Liu & Menggai Jiao & Lanlu Lu & Heather M. Barkholtz & Yuping Li & Ying Wang & Luhua Jiang & Zhijian Wu & Di-jia Liu & Lin Zhuang & Chao Ma & Jie Zeng & Bingsen Zhang & Dangsheng Su & Ping Song &, 2017. "Erratum: High performance platinum single atom electrocatalyst for oxygen reduction reaction," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Huichao & Xiao, Liusheng & Kuang, Min & Wang, Jiatang & Zhang, Houcheng, 2024. "Innovative use of air gap membrane distillation to harvest waste heat from alkaline fuel cell for efficient freshwater production: A comprehensive 4E study," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanlin Zhou & Baojie Li & Xinyu Liu & Jingjing Jiang & Shuowen Bo & Chenyu Yang & Qizheng An & Yuhao Zhang & Mikhail A. Soldatov & Huijuan Wang & Shiqiang Wei & Qinghua Liu, 2024. "In situ tuning of platinum 5d valence states for four-electron oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Shuhu Yin & Long Chen & Jian Yang & Xiaoyang Cheng & Hongbin Zeng & Yuhao Hong & Huan Huang & Xiaoxiao Kuai & Yangu Lin & Rui Huang & Yanxia Jiang & Shigang Sun, 2024. "A Fe-NC electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Shuhu Yin & Hongyuan Yi & Mengli Liu & Jian Yang & Shuangli Yang & Bin-Wei Zhang & Long Chen & Xiaoyang Cheng & Huan Huang & Rui Huang & Yanxia Jiang & Honggang Liao & Shigang Sun, 2024. "An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jiajun Zhao & Cehuang Fu & Ke Ye & Zheng Liang & Fangling Jiang & Shuiyun Shen & Xiaoran Zhao & Lu Ma & Zulipiya Shadike & Xiaoming Wang & Junliang Zhang & Kun Jiang, 2022. "Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    10. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    12. Saurabh Singh & Raghvendra Pandey & Sabrina Presto & Maria Paola Carpanese & Antonio Barbucci & Massimo Viviani & Prabhakar Singh, 2019. "Suitability of Sm 3+ - Substituted SrTiO 3 as Anode Materials for Solid Oxide Fuel Cells: A Correlation between Structural and Electrical Properties," Energies, MDPI, vol. 12(21), pages 1-16, October.
    13. Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Jine Wu & Chenyi Liao & Tianyu Li & Jing Zhou & Linjuan Zhang & Jian-Qiang Wang & Guohui Li & Xianfeng Li, 2023. "Metal-coordinated polybenzimidazole membranes with preferential K+ transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    16. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    17. Ortiz-Vitoriano, N. & Bernuy-López, C. & Ruiz de Larramendi, I. & Knibbe, R. & Thydén, K. & Hauch, A. & Holtappels, P. & Rojo, T., 2013. "Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation," Applied Energy, Elsevier, vol. 104(C), pages 984-991.
    18. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    19. Yusung Kim & Sanghoon Lee & Gu Young Cho & Wonjong Yu & Yeageun Lee & Ikwhang Chang & Jong Dae Baek & Suk Won Cha, 2020. "Investigation of Reducing In-Plane Resistance of Nickel Oxide-Samaria-Doped Ceria Anode in Thin-Film Solid Oxide Fuel Cells," Energies, MDPI, vol. 13(8), pages 1-8, April.
    20. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37011-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.