IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09421-5.html
   My bibliography  Save this article

Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity

Author

Listed:
  • Xiaojuan Zhu

    (Shanghai Normal University)

  • Qishui Guo

    (Shanghai Normal University)

  • Yafei Sun

    (Shanghai Normal University)

  • Shangjun Chen

    (Shanghai Normal University)

  • Jian-Qiang Wang

    (Chinese Academy of Sciences)

  • Mengmeng Wu

    (Shanghai Normal University)

  • Wenzhao Fu

    (East China University of Science and Technology)

  • Yanqiang Tang

    (East China University of Science and Technology)

  • Xuezhi Duan

    (East China University of Science and Technology)

  • De Chen

    (Norwegian University of Science and Technology)

  • Ying Wan

    (Shanghai Normal University)

Abstract

Understanding the catalytic mechanism of bimetallic nanocatalysts remains challenging. Here, we adopt an adsorbate mediated thermal reduction approach to yield monodispersed AuPd catalysts with continuous change of the Pd-Au coordination numbers embedded in a mesoporous carbonaceous matrix. The structure of nanoalloys is well-defined, allowing for a direct determination of the structure-property relationship. The results show that the Pd single atom and dimer are the active sites for the base-free oxidation of primary alcohols. Remarkably, the d-orbital charge on the surface of Pd serves as a descriptor to the adsorbate states and hence the catalytic performance. The maximum d-charge gain occurred in a composition with 33–50 at% Pd corresponds to up to 9 times enhancement in the reaction rate compared to the neat Pd. The findings not only open an avenue towards the rational design of catalysts but also enable the identification of key steps involved in the catalytic reactions.

Suggested Citation

  • Xiaojuan Zhu & Qishui Guo & Yafei Sun & Shangjun Chen & Jian-Qiang Wang & Mengmeng Wu & Wenzhao Fu & Yanqiang Tang & Xuezhi Duan & De Chen & Ying Wan, 2019. "Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09421-5
    DOI: 10.1038/s41467-019-09421-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09421-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09421-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohui Zhang & Zhihu Sun & Rui Jin & Chuwei Zhu & Chuanlin Zhao & Yue Lin & Qiaoqiao Guan & Lina Cao & Hengwei Wang & Shang Li & Hancheng Yu & Xinyu Liu & Leilei Wang & Shiqiang Wei & Wei-Xue Li & Ju, 2023. "Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yueshan Xu & Daoxiong Wu & Qinghua Zhang & Peng Rao & Peilin Deng & Mangen Tang & Jing Li & Yingjie Hua & Chongtai Wang & Shengkui Zhong & Chunman Jia & Zhongxin Liu & Yijun Shen & Lin Gu & Xinlong Ti, 2024. "Regulating Au coverage for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yang Yang & Xiaojuan Zhu & Lili Wang & Junyu Lang & Guohua Yao & Tian Qin & Zhouhong Ren & Liwei Chen & Xi Liu & Wei Li & Ying Wan, 2022. "Breaking scaling relationships in alkynol semi-hydrogenation by manipulating interstitial atoms in Pd with d-electron gain," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xiaorui Zhao & Xiaojuan Zhu & Kang Wang & Junqian Lv & Shangjun Chen & Guohua Yao & Junyu Lang & Fei Lv & Yinghui Pu & Ruoou Yang & Bingsen Zhang & Zheng Jiang & Ying Wan, 2022. "Palladium catalyzed radical relay for the oxidative cross-coupling of quinolines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09421-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.