IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01253-5.html
   My bibliography  Save this article

Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma

Author

Listed:
  • Erin L. Rich

    (University of California at Berkeley
    Icahn School of Medicine at Mount Sinai)

  • Joni D. Wallis

    (University of California at Berkeley
    University of California at Berkeley)

Abstract

High-gamma signals mirror the tuning and temporal profiles of neurons near a recording electrode in sensory and motor areas. These frequencies appear to aggregate local neuronal activity, but it is unclear how this relationship affects information encoding in high-gamma activity (HGA) in cortical areas where neurons are heterogeneous in selectivity and temporal responses, and are not functionally clustered. Here we report that populations of neurons and HGA recorded from the orbitofrontal cortex (OFC) encode similar information, although there is little correspondence between signals recorded by the same electrode. HGA appears to aggregate heterogeneous neuron activity, such that the spiking of a single cell corresponds to only small increases in HGA. Interestingly, large-scale spatiotemporal dynamics are revealed in HGA, but less apparent in the population of single neurons. Overall, HGA is closely related to neuron activity in OFC, and provides a unique means of studying large-scale spatiotemporal dynamics of information processing.

Suggested Citation

  • Erin L. Rich & Joni D. Wallis, 2017. "Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01253-5
    DOI: 10.1038/s41467-017-01253-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01253-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01253-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin W. Hoy & David R. Quiroga-Martinez & Eduardo Sandoval & David King-Stephens & Kenneth D. Laxer & Peter Weber & Jack J. Lin & Robert T. Knight, 2023. "Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    3. Elizabeth L. Johnson & Jack J. Lin & David King-Stephens & Peter B. Weber & Kenneth D. Laxer & Ignacio Saez & Fady Girgis & Mark D’Esposito & Robert T. Knight & David Badre, 2023. "A rapid theta network mechanism for flexible information encoding," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Luis Manssuer & Qiong Ding & Yashu Feng & Ruoqi Yang & Wei Liu & Bomin Sun & Shikun Zhan & Valerie Voon, 2024. "Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01253-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.