IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32117-2.html
   My bibliography  Save this article

Metasurface-driven full-space structured light for three-dimensional imaging

Author

Listed:
  • Gyeongtae Kim

    (Pohang University of Science and Technology (POSTECH))

  • Yeseul Kim

    (Pohang University of Science and Technology (POSTECH))

  • Jooyeong Yun

    (Pohang University of Science and Technology (POSTECH))

  • Seong-Won Moon

    (Pohang University of Science and Technology (POSTECH))

  • Seokwoo Kim

    (Pohang University of Science and Technology (POSTECH))

  • Jaekyung Kim

    (Pohang University of Science and Technology (POSTECH))

  • Junkyeong Park

    (Pohang University of Science and Technology (POSTECH))

  • Trevon Badloe

    (Pohang University of Science and Technology (POSTECH))

  • Inki Kim

    (Pohang University of Science and Technology (POSTECH)
    Sungkyunkwan University
    Sungkyunkwan University)

  • Junsuk Rho

    (Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH)
    POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics
    National Institute of Nanomaterials Technology (NINT))

Abstract

Structured light (SL)-based depth-sensing technology illuminates the objects with an array of dots, and backscattered light is monitored to extract three-dimensional information. Conventionally, diffractive optical elements have been used to form laser dot array, however, the field-of-view (FOV) and diffraction efficiency are limited due to their micron-scale pixel size. Here, we propose a metasurface-enhanced SL-based depth-sensing platform that scatters high-density ~10 K dot array over the 180° FOV by manipulating light at subwavelength-scale. As a proof-of-concept, we place face masks one on the beam axis and the other 50° apart from axis within distance of 1 m and estimate the depth information using a stereo matching algorithm. Furthermore, we demonstrate the replication of the metasurface using the nanoparticle-embedded-resin (nano-PER) imprinting method which enables high-throughput manufacturing of the metasurfaces on any arbitrary substrates. Such a full-space diffractive metasurface may afford ultra-compact depth perception platform for face recognition and automotive robot vision applications.

Suggested Citation

  • Gyeongtae Kim & Yeseul Kim & Jooyeong Yun & Seong-Won Moon & Seokwoo Kim & Jaekyung Kim & Junkyeong Park & Trevon Badloe & Inki Kim & Junsuk Rho, 2022. "Metasurface-driven full-space structured light for three-dimensional imaging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32117-2
    DOI: 10.1038/s41467-022-32117-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32117-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32117-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gwanho Yoon & Kwan Kim & Daihong Huh & Heon Lee & Junsuk Rho, 2020. "Single-step manufacturing of hierarchical dielectric metalens in the visible," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Tzu-Yung Huang & Richard R. Grote & Sander A. Mann & David A. Hopper & Annemarie L. Exarhos & Gerald G. Lopez & Amelia R. Klein & Erik C. Garnett & Lee C. Bassett, 2019. "A monolithic immersion metalens for imaging solid-state quantum emitters," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Qinghua Song & Arthur Baroni & Rajath Sawant & Peinan Ni & Virginie Brandli & Sébastien Chenot & Stéphane Vézian & Benjamin Damilano & Philippe Mierry & Samira Khadir & Patrick Ferrand & Patrice Genev, 2020. "Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongwoo Lee & Beomseok Oh & Jeonghoon Park & Seong-Won Moon & Kilsoo Shin & Sea-Moon Kim & Junsuk Rho, 2024. "Wide field-of-hearing metalens for aberration-free sound capture," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixuan Zheng & Ruhao Pan & Guangzhou Geng & Qiang Jiang & Shuo Du & Lingling Huang & Changzhi Gu & Junjie Li, 2022. "Active multiband varifocal metalenses based on orbital angular momentum division multiplexing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Minkyung Kim & Dasol Lee & Younghwan Yang & Yeseul Kim & Junsuk Rho, 2022. "Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Dongwoo Lee & Beomseok Oh & Jeonghoon Park & Seong-Won Moon & Kilsoo Shin & Sea-Moon Kim & Junsuk Rho, 2024. "Wide field-of-hearing metalens for aberration-free sound capture," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Aleksandr Barulin & Yeseul Kim & Dong Kyo Oh & Jaehyuck Jang & Hyemi Park & Junsuk Rho & Inki Kim, 2024. "Dual-wavelength metalens enables Epi-fluorescence detection from single molecules," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Danylo Komisar & Shailesh Kumar & Yinhui Kan & Chao Meng & Liudmila F. Kulikova & Valery A. Davydov & Viatcheslav N. Agafonov & Sergey I. Bozhevolnyi, 2023. "Multiple channelling single-photon emission with scattering holography designed metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Xuyue Guo & Peng Li & Jinzhan Zhong & Dandan Wen & Bingyan Wei & Sheng Liu & Shuxia Qi & Jianlin Zhao, 2022. "Stokes meta-hologram toward optical cryptography," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Pei-Nan Ni & Pan Fu & Pei-Pei Chen & Chen Xu & Yi-Yang Xie & Patrice Genevet, 2022. "Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Byoungsu Ko & Trevon Badloe & Younghwan Yang & Jeonghoon Park & Jaekyung Kim & Heonyeong Jeong & Chunghwan Jung & Junsuk Rho, 2022. "Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. M. Iqbal Bakti Utama & Hongfei Zeng & Tumpa Sadhukhan & Anushka Dasgupta & S. Carin Gavin & Riddhi Ananth & Dmitry Lebedev & Wei Wang & Jia-Shiang Chen & Kenji Watanabe & Takashi Taniguchi & Tobin J. , 2023. "Chemomechanical modification of quantum emission in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32117-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.