IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36270-0.html
   My bibliography  Save this article

Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks

Author

Listed:
  • Ik-Jyae Kim

    (Pohang University of Science and Technology (POSTECH))

  • Min-Kyu Kim

    (Pohang University of Science and Technology (POSTECH))

  • Jang-Sik Lee

    (Pohang University of Science and Technology (POSTECH))

Abstract

Hardware-based neural networks (NNs) can provide a significant breakthrough in artificial intelligence applications due to their ability to extract features from unstructured data and learn from them. However, realizing complex NN models remains challenging because different tasks, such as feature extraction and classification, should be performed at different memory elements and arrays. This further increases the required number of memory arrays and chip size. Here, we propose a three-dimensional ferroelectric NAND (3D FeNAND) array for the area-efficient hardware implementation of NNs. Vector-matrix multiplication is successfully demonstrated using the integrated 3D FeNAND arrays, and excellent pattern classification is achieved. By allocating each array of vertical layers in 3D FeNAND as the hidden layer of NN, each layer can be used to perform different tasks, and the classification of color-mixed patterns is achieved. This work provides a practical strategy to realize high-performance and highly efficient NN systems by stacking computation components vertically.

Suggested Citation

  • Ik-Jyae Kim & Min-Kyu Kim & Jang-Sik Lee, 2023. "Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36270-0
    DOI: 10.1038/s41467-023-36270-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36270-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36270-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vinay Joshi & Manuel Le Gallo & Simon Haefeli & Irem Boybat & S. R. Nandakumar & Christophe Piveteau & Martino Dazzi & Bipin Rajendran & Abu Sebastian & Evangelos Eleftheriou, 2020. "Accurate deep neural network inference using computational phase-change memory," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Rohit Abraham John & Jyotibdha Acharya & Chao Zhu & Abhijith Surendran & Sumon Kumar Bose & Apoorva Chaturvedi & Nidhi Tiwari & Yang Gao & Yongmin He & Keke K. Zhang & Manzhang Xu & Wei Lin Leong & Zh, 2020. "Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. M. Prezioso & F. Merrikh-Bayat & B. D. Hoskins & G. C. Adam & K. K. Likharev & D. B. Strukov, 2015. "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, Nature, vol. 521(7550), pages 61-64, May.
    4. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Ruibin Mao & Bo Wen & Arman Kazemi & Yahui Zhao & Ann Franchesca Laguna & Rui Lin & Ngai Wong & Michael Niemier & X. Sharon Hu & Xia Sheng & Catherine E. Graves & John Paul Strachan & Can Li, 2022. "Experimentally validated memristive memory augmented neural network with efficient hashing and similarity search," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Bin Gao & Ying Zhou & Qingtian Zhang & Shuanglin Zhang & Peng Yao & Yue Xi & Qi Liu & Meiran Zhao & Wenqiang Zhang & Zhengwu Liu & Xinyi Li & Jianshi Tang & He Qian & Huaqiang Wu, 2022. "Memristor-based analogue computing for brain-inspired sound localization with in situ training," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Doeon Lee & Minseong Park & Yongmin Baek & Byungjoon Bae & Junseok Heo & Kyusang Lee, 2022. "In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Han Xu & Dashan Shang & Qing Luo & Junjie An & Yue Li & Shuyu Wu & Zhihong Yao & Woyu Zhang & Xiaoxin Xu & Chunmeng Dou & Hao Jiang & Liyang Pan & Xumeng Zhang & Ming Wang & Zhongrui Wang & Jianshi Ta, 2023. "A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Rui Wang & Tuo Shi & Xumeng Zhang & Jinsong Wei & Jian Lu & Jiaxue Zhu & Zuheng Wu & Qi Liu & Ming Liu, 2022. "Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Lee, Geun Ho & Kim, Tae-Hyeon & Song, Min Suk & Park, Jinwoo & Kim, Sungjoon & Hong, Kyungho & Kim, Yoon & Park, Byung-Gook & Kim, Hyungjin, 2022. "Effect of weight overlap region on neuromorphic system with memristive synaptic devices," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    18. Alsuwian, Turki & Kousar, Farhana & Rasheed, Umbreen & Imran, Muhammad & Hussain, Fayyaz & Arif Khalil, R.M. & Algadi, Hassan & Batool, Najaf & Khera, Ejaz Ahmad & Kiran, Saira & Ashiq, Muhammad Naeem, 2021. "First principles investigation of physically conductive bridge filament formation of aluminum doped perovskite materials for neuromorphic memristive applications," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Arnab Pal & Zichun Chai & Junkai Jiang & Wei Cao & Mike Davies & Vivek De & Kaustav Banerjee, 2024. "An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Parshina, Liubov & Novodvorsky, Oleg & Khramova, Olga & Gusev, Dmitriy & Polyakov, Alexander & Mikhalevsky, Vladimir & Cherebilo, Elena, 2021. "Laser synthesis of non-volatile memristor structures based on tantalum oxide thin films," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36270-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.