IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7728d10.1038_s41586-018-0601-5.html
   My bibliography  Save this article

Exciton-polariton topological insulator

Author

Listed:
  • S. Klembt

    (Universität Würzburg)

  • T. H. Harder

    (Universität Würzburg)

  • O. A. Egorov

    (Universität Würzburg)

  • K. Winkler

    (Universität Würzburg)

  • R. Ge

    (Nanyang Technological University)

  • M. A. Bandres

    (Physics Department and Solid State Institute)

  • M. Emmerling

    (Universität Würzburg)

  • L. Worschech

    (Universität Würzburg)

  • T. C. H. Liew

    (Nanyang Technological University)

  • M. Segev

    (Physics Department and Solid State Institute)

  • C. Schneider

    (Universität Würzburg)

  • S. Höfling

    (Universität Würzburg
    University of St Andrews)

Abstract

Topological insulators—materials that are insulating in the bulk but allow electrons to flow on their surface—are striking examples of materials in which topological invariants are manifested in robustness against perturbations such as defects and disorder1. Their most prominent feature is the emergence of edge states at the boundary between areas with different topological properties. The observable physical effect is unidirectional robust transport of these edge states. Topological insulators were originally observed in the integer quantum Hall effect2 (in which conductance is quantized in a strong magnetic field) and subsequently suggested3–5 and observed6 to exist without a magnetic field, by virtue of other effects such as strong spin–orbit interaction. These were systems of correlated electrons. During the past decade, the concepts of topological physics have been introduced into other fields, including microwaves7,8, photonic systems9,10, cold atoms11,12, acoustics13,14 and even mechanics15. Recently, topological insulators were suggested to be possible in exciton-polariton systems16–18 organized as honeycomb (graphene-like) lattices, under the influence of a magnetic field. Exciton-polaritons are part-light, part-matter quasiparticles that emerge from strong coupling of quantum-well excitons and cavity photons19. Accordingly, the predicted topological effects differ from all those demonstrated thus far. Here we demonstrate experimentally an exciton-polariton topological insulator. Our lattice of coupled semiconductor microcavities is excited non-resonantly by a laser, and an applied magnetic field leads to the unidirectional flow of a polariton wavepacket around the edge of the array. This chiral edge mode is populated by a polariton condensation mechanism. We use scanning imaging techniques in real space and Fourier space to measure photoluminescence and thus visualize the mode as it propagates. We demonstrate that the topological edge mode goes around defects, and that its propagation direction can be reversed by inverting the applied magnetic field. Our exciton-polariton topological insulator paves the way for topological phenomena that involve light–matter interaction, amplification and the interaction of exciton-polaritons as a nonlinear many-body system.

Suggested Citation

  • S. Klembt & T. H. Harder & O. A. Egorov & K. Winkler & R. Ge & M. A. Bandres & M. Emmerling & L. Worschech & T. C. H. Liew & M. Segev & C. Schneider & S. Höfling, 2018. "Exciton-polariton topological insulator," Nature, Nature, vol. 562(7728), pages 552-556, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7728:d:10.1038_s41586-018-0601-5
    DOI: 10.1038/s41586-018-0601-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0601-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0601-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Alexander B. Khanikaev & Andrea Alù, 2024. "Topological photonics: robustness and beyond," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    4. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Daria Smirnova & Filipp Komissarenko & Anton Vakulenko & Svetlana Kiriushechkina & Ekaterina Smolina & Sriram Guddala & Monica Allen & Jeffery Allen & Andrea Alù & Alexander B. Khanikaev, 2024. "Polaritonic states trapped by topological defects," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7728:d:10.1038_s41586-018-0601-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.