IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50666-6.html
   My bibliography  Save this article

Polaritonic states trapped by topological defects

Author

Listed:
  • Daria Smirnova

    (The Australian National University)

  • Filipp Komissarenko

    (The City College of New York)

  • Anton Vakulenko

    (The City College of New York)

  • Svetlana Kiriushechkina

    (The City College of New York)

  • Ekaterina Smolina

    (The Australian National University)

  • Sriram Guddala

    (The City College of New York
    City University of New York)

  • Monica Allen

    (Munitions Directorate)

  • Jeffery Allen

    (Munitions Directorate)

  • Andrea Alù

    (City University of New York
    City University of New York)

  • Alexander B. Khanikaev

    (The City College of New York
    University of Central Florida)

Abstract

The miniaturization of photonic technologies calls for a deliberate integration of diverse materials to enable novel functionalities in chip-scale devices. Topological photonic systems are a promising platform to couple structured light with solid-state matter excitations and establish robust forms of 1D polaritonic transport. Here, we demonstrate a mechanism to efficiently trap mid-IR structured phonon-polaritons in topological defects of a metasurface integrated with hexagonal boron nitride (hBN). These defects, created by stitching displaced domains of a Kekulé-patterned metasurface, sustain localized polaritonic modes that originate from coupling of electromagnetic fields with hBN lattice vibrations. These 0D higher-order topological modes, comprising phononic and photonic components with chiral polarization, are imaged in real- and Fourier-space. The results reveal a singular radiation leakage profile and selective excitation through spin-polarized edge waves at heterogeneous topological interfaces. This offers impactful opportunities to control light-matter waves in their dimensional hierarchy, paving the way for topological polariton shaping, ultrathin structured light sources, and thermal management at the nanoscale.

Suggested Citation

  • Daria Smirnova & Filipp Komissarenko & Anton Vakulenko & Svetlana Kiriushechkina & Ekaterina Smolina & Sriram Guddala & Monica Allen & Jeffery Allen & Andrea Alù & Alexander B. Khanikaev, 2024. "Polaritonic states trapped by topological defects," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50666-6
    DOI: 10.1038/s41467-024-50666-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50666-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50666-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mengyao Li & Ivan Sinev & Fedor Benimetskiy & Tatyana Ivanova & Ekaterina Khestanova & Svetlana Kiriushechkina & Anton Vakulenko & Sriram Guddala & Maurice Skolnick & Vinod M. Menon & Dmitry Krizhanov, 2021. "Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. S. Klembt & T. H. Harder & O. A. Egorov & K. Winkler & R. Ge & M. A. Bandres & M. Emmerling & L. Worschech & T. C. H. Liew & M. Segev & C. Schneider & S. Höfling, 2018. "Exciton-polariton topological insulator," Nature, Nature, vol. 562(7728), pages 552-556, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander B. Khanikaev & Andrea Alù, 2024. "Topological photonics: robustness and beyond," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    2. Feng Jin & Subhaskar Mandal & Jinqi Wu & Zhenhan Zhang & Wen Wen & Jiahao Ren & Baile Zhang & Timothy C. H. Liew & Qihua Xiong & Rui Su, 2024. "Observation of perovskite topological valley exciton-polaritons at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Wuchao Huang & Thomas G. Folland & Fengsheng Sun & Zebo Zheng & Ningsheng Xu & Qiaoxia Xing & Jingyao Jiang & Huanjun Chen & Joshua D. Caldwell & Hugen Yan & Shaozhi Deng, 2023. "In-plane hyperbolic polariton tuners in terahertz and long-wave infrared regimes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Kartashov, Yaroslav V., 2024. "Solitons in higher-order topological insulator created by unit cell twisting," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50666-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.