IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41274-x.html
   My bibliography  Save this article

Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions

Author

Listed:
  • Mina Farag

    (Washington University in St. Louis)

  • Wade M. Borcherds

    (St. Jude Children’s Research Hospital)

  • Anne Bremer

    (St. Jude Children’s Research Hospital)

  • Tanja Mittag

    (St. Jude Children’s Research Hospital)

  • Rohit V. Pappu

    (Washington University in St. Louis)

Abstract

Prion-like low-complexity domains (PLCDs) are involved in the formation and regulation of distinct biomolecular condensates that form via phase separation coupled to percolation. Intracellular condensates often encompass numerous distinct proteins with PLCDs. Here, we combine simulations and experiments to study mixtures of PLCDs from two RNA-binding proteins, hnRNPA1 and FUS. Using simulations and experiments, we find that 1:1 mixtures of A1-LCD and FUS-LCD undergo phase separation more readily than either of the PLCDs on their own due to complementary electrostatic interactions. Tie line analysis reveals that stoichiometric ratios of different components and their sequence-encoded interactions contribute jointly to the driving forces for condensate formation. Simulations also show that the spatial organization of PLCDs within condensates is governed by relative strengths of homotypic versus heterotypic interactions. We uncover rules for how interaction strengths and sequence lengths modulate conformational preferences of molecules at interfaces of condensates formed by mixtures of proteins.

Suggested Citation

  • Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41274-x
    DOI: 10.1038/s41467-023-41274-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41274-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41274-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong Joo Kim & Nam Chul Kim & Yong-Dong Wang & Emily A. Scarborough & Jennifer Moore & Zamia Diaz & Kyle S. MacLea & Brian Freibaum & Songqing Li & Amandine Molliex & Anderson P. Kanagaraj & Robert Ca, 2013. "Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS," Nature, Nature, vol. 495(7442), pages 467-473, March.
    2. Joshua A. Riback & Lian Zhu & Mylene C. Ferrolino & Michele Tolbert & Diana M. Mitrea & David W. Sanders & Ming-Tzo Wei & Richard W. Kriwacki & Clifford P. Brangwynne, 2020. "Composition-dependent thermodynamics of intracellular phase separation," Nature, Nature, vol. 581(7807), pages 209-214, May.
    3. Pilong Li & Sudeep Banjade & Hui-Chun Cheng & Soyeon Kim & Baoyu Chen & Liang Guo & Marc Llaguno & Javoris V. Hollingsworth & David S. King & Salman F. Banani & Paul S. Russo & Qiu-Xing Jiang & B. Tra, 2012. "Phase transitions in the assembly of multivalent signalling proteins," Nature, Nature, vol. 483(7389), pages 336-340, March.
    4. Yang Eric Guo & John C. Manteiga & Jonathan E. Henninger & Benjamin R. Sabari & Alessandra Dall’Agnese & Nancy M. Hannett & Jan-Hendrik Spille & Lena K. Afeyan & Alicia V. Zamudio & Krishna Shrinivas , 2019. "Pol II phosphorylation regulates a switch between transcriptional and splicing condensates," Nature, Nature, vol. 572(7770), pages 543-548, August.
    5. Bernardo Gouveia & Yoonji Kim & Joshua W. Shaevitz & Sabine Petry & Howard A. Stone & Clifford P. Brangwynne, 2022. "Capillary forces generated by biomolecular condensates," Nature, Nature, vol. 609(7926), pages 255-264, September.
    6. Taranpreet Kaur & Muralikrishna Raju & Ibraheem Alshareedah & Richoo B. Davis & Davit A. Potoyan & Priya R. Banerjee, 2021. "Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richoo B. Davis & Anushka Supakar & Aishwarya Kanchi Ranganath & Mahdi Muhammad Moosa & Priya R. Banerjee, 2024. "Heterotypic interactions can drive selective co-condensation of prion-like low-complexity domains of FET proteins and mammalian SWI/SNF complex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Aishwarya Agarwal & Lisha Arora & Sandeep K. Rai & Anamika Avni & Samrat Mukhopadhyay, 2022. "Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Beatrice Ramm & Dominik Schumacher & Andrea Harms & Tamara Heermann & Philipp Klos & Franziska Müller & Petra Schwille & Lotte Søgaard-Andersen, 2023. "Biomolecular condensate drives polymerization and bundling of the bacterial tubulin FtsZ to regulate cell division," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    8. Manisha Poudyal & Komal Patel & Laxmikant Gadhe & Ajay Singh Sawner & Pradeep Kadu & Debalina Datta & Semanti Mukherjee & Soumik Ray & Ambuja Navalkar & Siddhartha Maiti & Debdeep Chatterjee & Jyoti D, 2023. "Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Taehyun Kim & Jaeyoon Yoo & Sungho Do & Dong Soo Hwang & YongKeun Park & Yongdae Shin, 2023. "RNA-mediated demixing transition of low-density condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Agustín Mangiarotti & Nannan Chen & Ziliang Zhao & Reinhard Lipowsky & Rumiana Dimova, 2023. "Wetting and complex remodeling of membranes by biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Anamika Avni & Ashish Joshi & Anuja Walimbe & Swastik G. Pattanashetty & Samrat Mukhopadhyay, 2022. "Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Daniel C. Carrettiero & Maria C. Almeida & Andrew P. Longhini & Jennifer N. Rauch & Dasol Han & Xuemei Zhang & Saeed Najafi & Jason E. Gestwicki & Kenneth S. Kosik, 2022. "Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Shuangcheng Alivia Wu & Chenchen Shen & Xiaoqiong Wei & Xiawei Zhang & Siwen Wang & Xinxin Chen & Mauricio Torres & You Lu & Liangguang Leo Lin & Huilun Helen Wang & Allen H. Hunter & Deyu Fang & Shen, 2023. "The mechanisms to dispose of misfolded proteins in the endoplasmic reticulum of adipocytes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Baolei Yuan & Xuan Zhou & Keiichiro Suzuki & Gerardo Ramos-Mandujano & Mengge Wang & Muhammad Tehseen & Lorena V. Cortés-Medina & James J. Moresco & Sarah Dunn & Reyna Hernandez-Benitez & Tomoaki Hish, 2022. "Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Zheng Shen & Daxiao Sun & Adriana Savastano & Sára Joana Varga & Maria-Sol Cima-Omori & Stefan Becker & Alf Honigmann & Markus Zweckstetter, 2023. "Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    17. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Omar A. Saleh & Sam Wilken & Todd M. Squires & Tim Liedl, 2023. "Vacuole dynamics and popping-based motility in liquid droplets of DNA," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Hiroaki Ohishi & Seiru Shimada & Satoshi Uchino & Jieru Li & Yuko Sato & Manabu Shintani & Hitoshi Owada & Yasuyuki Ohkawa & Alexandros Pertsinidis & Takashi Yamamoto & Hiroshi Kimura & Hiroshi Ochiai, 2022. "STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41274-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.