IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43199-x.html
   My bibliography  Save this article

Engineering chirality at wafer scale with ordered carbon nanotube architectures

Author

Listed:
  • Jacques Doumani

    (Rice University
    Rice University
    The University of Utah)

  • Minhan Lou

    (The University of Utah)

  • Oliver Dewey

    (Rice University
    Rice University)

  • Nina Hong

    (J.A. Woollam Co., Inc.)

  • Jichao Fan

    (The University of Utah)

  • Andrey Baydin

    (Rice University
    Rice University)

  • Keshav Zahn

    (Rice University)

  • Yohei Yomogida

    (Tokyo Metropolitan University)

  • Kazuhiro Yanagi

    (Tokyo Metropolitan University)

  • Matteo Pasquali

    (Rice University
    Rice University
    Rice University
    Rice University)

  • Riichiro Saito

    (Tokyo Metropolitan University
    Tohoku University
    National Taiwan Normal University)

  • Junichiro Kono

    (Rice University
    Rice University
    Rice University
    Rice University)

  • Weilu Gao

    (The University of Utah
    Rice University)

Abstract

Creating artificial matter with controllable chirality in a simple and scalable manner brings new opportunities to diverse areas. Here we show two such methods based on controlled vacuum filtration - twist stacking and mechanical rotation - for fabricating wafer-scale chiral architectures of ordered carbon nanotubes (CNTs) with tunable and large circular dichroism (CD). By controlling the stacking angle and handedness in the twist-stacking approach, we maximize the CD response and achieve a high deep-ultraviolet ellipticity of 40 ± 1 mdeg nm−1. Our theoretical simulations using the transfer matrix method reproduce the experimentally observed CD spectra and further predict that an optimized film of twist-stacked CNTs can exhibit an ellipticity as high as 150 mdeg nm−1, corresponding to a g factor of 0.22. Furthermore, the mechanical rotation method not only accelerates the fabrication of twisted structures but also produces both chiralities simultaneously in a single sample, in a single run, and in a controllable manner. The created wafer-scale objects represent an alternative type of synthetic chiral matter consisting of ordered quantum wires whose macroscopic properties are governed by nanoscopic electronic signatures and can be used to explore chiral phenomena and develop chiral photonic and optoelectronic devices.

Suggested Citation

  • Jacques Doumani & Minhan Lou & Oliver Dewey & Nina Hong & Jichao Fan & Andrey Baydin & Keshav Zahn & Yohei Yomogida & Kazuhiro Yanagi & Matteo Pasquali & Riichiro Saito & Junichiro Kono & Weilu Gao, 2023. "Engineering chirality at wafer scale with ordered carbon nanotube architectures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43199-x
    DOI: 10.1038/s41467-023-43199-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43199-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43199-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kazuhiro Yanagi & Ryotaro Okada & Yota Ichinose & Yohei Yomogida & Fumiya Katsutani & Weilu Gao & Junichiro Kono, 2018. "Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    2. Y. Zhao & M.A. Belkin & A. Alù, 2012. "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    3. Huaping Liu & Daisuke Nishide & Takeshi Tanaka & Hiromichi Kataura, 2011. "Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    4. Peter Lodahl & Sahand Mahmoodian & Søren Stobbe & Arno Rauschenbeutel & Philipp Schneeweiss & Jürgen Volz & Hannes Pichler & Peter Zoller, 2017. "Chiral quantum optics," Nature, Nature, vol. 541(7638), pages 473-480, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xiaolin Lu & Xujie Wang & Shuangshuang Wang & Tao Ding, 2023. "Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Mathias J. R. Staunstrup & Alexey Tiranov & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Nir Rotenberg & Peter Lodahl & Hanna Le Jeannic, 2024. "Direct observation of a few-photon phase shift induced by a single quantum emitter in a waveguide," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    6. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Andrew H. Salij & Randall H. Goldsmith & Roel Tempelaar, 2024. "Theory predicts 2D chiral polaritons based on achiral Fabry–Pérot cavities using apparent circular dichroism," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Zhiyao Ma & Tian Tian & Yuxuan Liao & Xue Feng & Yongzhuo Li & Kaiyu Cui & Fang Liu & Hao Sun & Wei Zhang & Yidong Huang, 2024. "Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Wei Su & Xiao Li & Linhai Li & Dehua Yang & Futian Wang & Xiaojun Wei & Weiya Zhou & Hiromichi Kataura & Sishen Xie & Huaping Liu, 2023. "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Aditya Tripathi & Chibuzor Fabian Ugwu & Viktar S. Asadchy & Ihar Faniayeu & Ivan Kravchenko & Shanhui Fan & Yuri Kivshar & Jason Valentine & Sergey S. Kruk, 2024. "Nanoscale optical nonreciprocity with nonlinear metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Huacheng Li & Xin Xu & Rongcheng Guan & Artur Movsesyan & Zhenni Lu & Qiliang Xu & Ziyun Jiang & Yurong Yang & Majid Khan & Jin Wen & Hongwei Wu & Santiago Moya & Gil Markovich & Huatian Hu & Zhiming , 2024. "Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Wang, Xin & Huang, Kai-Wei & Qiu, Qing-Yang & Xiong, Hao, 2023. "Nonreciprocal double-carrier frequency combs in cavity magnonics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Ufuk Kilic & Matthew Hilfiker & Shawn Wimer & Alexander Ruder & Eva Schubert & Mathias Schubert & Christos Argyropoulos, 2024. "Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Hao Jiang & Yinzhu Chen & Wenyu Guo & Yan Zhang & Rigui Zhou & Mile Gu & Fan Zhong & Zhenhua Ni & Junpeng Lu & Cheng-Wei Qiu & Weibo Gao, 2024. "Metasurface-enabled broadband multidimensional photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43199-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.