IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42857-4.html
   My bibliography  Save this article

Observing the universal screening of a Kondo impurity

Author

Listed:
  • C. Piquard

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • P. Glidic

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • C. Han

    (Tel Aviv University)

  • A. Aassime

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • A. Cavanna

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • U. Gennser

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • Y. Meir

    (Ben-Gurion University of the Negev)

  • E. Sela

    (Tel Aviv University)

  • A. Anthore

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies
    Université Paris Cité, CNRS, Centre de Nanosciences et de Nanotechnologies)

  • F. Pierre

    (Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies)

Abstract

The Kondo effect, deriving from a local magnetic impurity mediating electron-electron interactions, constitutes a flourishing basis for understanding a large variety of intricate many-body problems. Its experimental implementation in tunable circuits has made possible important advances through well-controlled investigations. However, these have mostly concerned transport properties, whereas thermodynamic observations - notably the fundamental measurement of the spin of the Kondo impurity - remain elusive in test-bed circuits. Here, with a novel combination of a ‘charge’ Kondo circuit with a charge sensor, we directly observe the state of the impurity and its progressive screening. We establish the universal renormalization flow from a single free spin to a screened singlet, the associated reduction in the magnetization, and the relationship between scaling Kondo temperature and microscopic parameters. In our device, a Kondo pseudospin is realized by two degenerate charge states of a metallic island, which we measure with a non-invasive, capacitively coupled charge sensor. Such pseudospin probe of an engineered Kondo system opens the way to the thermodynamic investigation of many exotic quantum states, including the clear observation of Majorana zero modes through their fractional entropy.

Suggested Citation

  • C. Piquard & P. Glidic & C. Han & A. Aassime & A. Cavanna & U. Gennser & Y. Meir & E. Sela & A. Anthore & F. Pierre, 2023. "Observing the universal screening of a Kondo impurity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42857-4
    DOI: 10.1038/s41467-023-42857-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42857-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42857-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Goldhaber-Gordon & Hadas Shtrikman & D. Mahalu & David Abusch-Magder & U. Meirav & M. A. Kastner, 1998. "Kondo effect in a single-electron transistor," Nature, Nature, vol. 391(6663), pages 156-159, January.
    2. S. Jezouin & Z. Iftikhar & A. Anthore & F. D. Parmentier & U. Gennser & A. Cavanna & A. Ouerghi & I. P. Levkivskyi & E. Idrisov & E. V. Sukhorukov & L. I. Glazman & F. Pierre, 2016. "Controlling charge quantization with quantum fluctuations," Nature, Nature, vol. 536(7614), pages 58-62, August.
    3. R. M. Potok & I. G. Rau & Hadas Shtrikman & Yuval Oreg & D. Goldhaber-Gordon, 2007. "Observation of the two-channel Kondo effect," Nature, Nature, vol. 446(7132), pages 167-171, March.
    4. Z. Iftikhar & A. Anthore & S. Jezouin & F. D. Parmentier & Y. Jin & A. Cavanna & A. Ouerghi & U. Gennser & F. Pierre, 2016. "Primary thermometry triad at 6 mK in mesoscopic circuits," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    5. M. M. Desjardins & J. J. Viennot & M. C. Dartiailh & L. E. Bruhat & M. R. Delbecq & M. Lee & M.-S. Choi & A. Cottet & T. Kontos, 2017. "Observation of the frozen charge of a Kondo resonance," Nature, Nature, vol. 545(7652), pages 71-74, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lev V. Levitin & Harriet van der Vliet & Terje Theisen & Stefanos Dimitriadis & Marijn Lucas & Antonio D. Corcoles & Ján Nyéki & Andrew J. Casey & Graham Creeth & Ian Farrer & David A. Ritchie & James, 2022. "Cooling low-dimensional electron systems into the microkelvin regime," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešič & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2024. "Correlation between two distant quasiparticles in separate superconducting islands mediated by a single spin," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. P. Glidic & O. Maillet & C. Piquard & A. Aassime & A. Cavanna & Y. Jin & U. Gennser & A. Anthore & F. Pierre, 2023. "Quasiparticle Andreev scattering in the ν = 1/3 fractional quantum Hall regime," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešić & Peter Krogstrup & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2022. "Excitations in a superconducting Coulombic energy gap," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Kenji Shibata & Masaki Yoshida & Kazuhiko Hirakawa & Tomohiro Otsuka & Satria Zulkarnaen Bisri & Yoshihiro Iwasa, 2023. "Single PbS colloidal quantum dot transistors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Annika Kurzmann & Yaakov Kleeorin & Chuyao Tong & Rebekka Garreis & Angelika Knothe & Marius Eich & Christopher Mittag & Carolin Gold & Folkert Kornelis Vries & Kenji Watanabe & Takashi Taniguchi & Vl, 2021. "Kondo effect and spin–orbit coupling in graphene quantum dots," Nature Communications, Nature, vol. 12(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42857-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.