IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29634-5.html
   My bibliography  Save this article

Excitations in a superconducting Coulombic energy gap

Author

Listed:
  • Juan Carlos Estrada Saldaña

    (University of Copenhagen)

  • Alexandros Vekris

    (University of Copenhagen
    University of Chinese Academy of Sciences)

  • Luka Pavešić

    (Jožef Stefan Institute
    University of Ljubljana)

  • Peter Krogstrup

    (University of Copenhagen)

  • Rok Žitko

    (Jožef Stefan Institute
    University of Ljubljana)

  • Kasper Grove-Rasmussen

    (University of Copenhagen)

  • Jesper Nygård

    (University of Copenhagen)

Abstract

Cooper pairing and Coulomb repulsion are antagonists, producing distinct energy gaps in superconductors and Mott insulators. When a superconductor exchanges unpaired electrons with a quantum dot, its gap is populated by a pair of electron–hole symmetric Yu-Shiba-Rusinov excitations between doublet and singlet many-body states. The fate of these excitations in the presence of a strong Coulomb repulsion in the superconductor is unknown, but of importance in applications such as topological superconducting qubits and multi-channel impurity models. Here we couple a quantum dot to a superconducting island with a tunable Coulomb repulsion. We show that a strong Coulomb repulsion changes the singlet many-body state into a two-body state. It also breaks the electron–hole energy symmetry of the excitations, which thereby lose their Yu-Shiba-Rusinov character.

Suggested Citation

  • Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešić & Peter Krogstrup & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2022. "Excitations in a superconducting Coulombic energy gap," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29634-5
    DOI: 10.1038/s41467-022-29634-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29634-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29634-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. M. Potok & I. G. Rau & Hadas Shtrikman & Yuval Oreg & D. Goldhaber-Gordon, 2007. "Observation of the two-channel Kondo effect," Nature, Nature, vol. 446(7132), pages 167-171, March.
    2. Sergio Vlaic & Stéphane Pons & Tianzhen Zhang & Alexandre Assouline & Alexandre Zimmers & Christophe David & Guillemin Rodary & Jean-Christophe Girard & Dimitri Roditchev & Hervé Aubin, 2017. "Superconducting parity effect across the Anderson limit," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. S. M. Albrecht & A. P. Higginbotham & M. Madsen & F. Kuemmeth & T. S. Jespersen & J. Nygård & P. Krogstrup & C. M. Marcus, 2016. "Exponential protection of zero modes in Majorana islands," Nature, Nature, vol. 531(7593), pages 206-209, March.
    4. Jie Shen & Sebastian Heedt & Francesco Borsoi & Bernard van Heck & Sasa Gazibegovic & Roy L. M. Op het Veld & Diana Car & John A. Logan & Mihir Pendharkar & Senja J. J. Ramakers & Guanzhong Wang & Di , 2018. "Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešič & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2024. "Correlation between two distant quasiparticles in separate superconducting islands mediated by a single spin," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Yiru Hao & Gu Zhang & Donghao Liu & Dong E. Liu, 2022. "Anomalous universal conductance as a hallmark of non-locality in a Majorana-hosted superconducting island," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Sandra Benter & Adam Jönsson & Jonas Johansson & Lin Zhu & Evangelos Golias & Lars-Erik Wernersson & Anders Mikkelsen, 2023. "Geometric control of diffusing elements on InAs semiconductor surfaces via metal contacts," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Gang Qiu & Hung-Yu Yang & Lunhui Hu & Huairuo Zhang & Chih-Yen Chen & Yanfeng Lyu & Christopher Eckberg & Peng Deng & Sergiy Krylyuk & Albert V. Davydov & Ruixing Zhang & Kang L. Wang, 2023. "Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. C. Piquard & P. Glidic & C. Han & A. Aassime & A. Cavanna & U. Gennser & Y. Meir & E. Sela & A. Anthore & F. Pierre, 2023. "Observing the universal screening of a Kondo impurity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Hemian Yi & Lun-Hui Hu & Yi-Fan Zhao & Ling-Jie Zhou & Zi-Jie Yan & Ruoxi Zhang & Wei Yuan & Zihao Wang & Ke Wang & Danielle Reifsnyder Hickey & Anthony R. Richardella & John Singleton & Laurel E. Win, 2023. "Dirac-fermion-assisted interfacial superconductivity in epitaxial topological-insulator/iron-chalcogenide heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Lev V. Levitin & Harriet van der Vliet & Terje Theisen & Stefanos Dimitriadis & Marijn Lucas & Antonio D. Corcoles & Ján Nyéki & Andrew J. Casey & Graham Creeth & Ian Farrer & David A. Ritchie & James, 2022. "Cooling low-dimensional electron systems into the microkelvin regime," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29634-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.