Author
Listed:
- Z. Iftikhar
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- A. Anthore
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- S. Jezouin
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- F. D. Parmentier
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- Y. Jin
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- A. Cavanna
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- A. Ouerghi
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- U. Gennser
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
- F. Pierre
(Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud-Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité)
Abstract
Quantum physics emerge and develop as temperature is reduced. Although mesoscopic electrical circuits constitute an outstanding platform to explore quantum behaviour, the challenge in cooling the electrons impedes their potential. The strong coupling of such micrometre-scale devices with the measurement lines, combined with the weak coupling to the substrate, makes them extremely difficult to thermalize below 10 mK and imposes in situ thermometers. Here we demonstrate electronic quantum transport at 6 mK in micrometre-scale mesoscopic circuits. The thermometry methods are established by the comparison of three in situ primary thermometers, each involving a different underlying physics. The employed combination of quantum shot noise, quantum back action of a resistive circuit and conductance oscillations of a single-electron transistor covers a remarkably broad spectrum of mesoscopic phenomena. The experiment, performed in vacuum using a standard cryogen-free dilution refrigerator, paves the way towards the sub-millikelvin range with additional thermalization and refrigeration techniques.
Suggested Citation
Z. Iftikhar & A. Anthore & S. Jezouin & F. D. Parmentier & Y. Jin & A. Cavanna & A. Ouerghi & U. Gennser & F. Pierre, 2016.
"Primary thermometry triad at 6 mK in mesoscopic circuits,"
Nature Communications, Nature, vol. 7(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12908
DOI: 10.1038/ncomms12908
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Lev V. Levitin & Harriet van der Vliet & Terje Theisen & Stefanos Dimitriadis & Marijn Lucas & Antonio D. Corcoles & Ján Nyéki & Andrew J. Casey & Graham Creeth & Ian Farrer & David A. Ritchie & James, 2022.
"Cooling low-dimensional electron systems into the microkelvin regime,"
Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- P. Glidic & O. Maillet & C. Piquard & A. Aassime & A. Cavanna & Y. Jin & U. Gennser & A. Anthore & F. Pierre, 2023.
"Quasiparticle Andreev scattering in the ν = 1/3 fractional quantum Hall regime,"
Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- C. Piquard & P. Glidic & C. Han & A. Aassime & A. Cavanna & U. Gennser & Y. Meir & E. Sela & A. Anthore & F. Pierre, 2023.
"Observing the universal screening of a Kondo impurity,"
Nature Communications, Nature, vol. 14(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12908. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.