IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49618-x.html
   My bibliography  Save this article

Heterodimensional Kondo superlattices with strong anisotropy

Author

Listed:
  • Qi Feng

    (Beijing Institute of Technology)

  • Junxi Duan

    (Beijing Institute of Technology)

  • Ping Wang

    (Beijing Institute of Technology)

  • Wei Jiang

    (Beijing Institute of Technology)

  • Huimin Peng

    (Beijing Institute of Technology)

  • Jinrui Zhong

    (Beijing Institute of Technology)

  • Jin Cao

    (Beijing Institute of Technology)

  • Yuqing Hu

    (Beijing Institute of Technology)

  • Qiuli Li

    (Beijing Institute of Technology)

  • Qinsheng Wang

    (Beijing Institute of Technology)

  • Jiadong Zhou

    (Beijing Institute of Technology)

  • Yugui Yao

    (Beijing Institute of Technology)

Abstract

Localized magnetic moments in non-magnetic materials, by interacting with the itinerary electrons, can profoundly change the metallic properties, developing various correlated phenomena such as the Kondo effect, heavy fermion, and unconventional superconductivity. In most Kondo systems, the localized moments are introduced through magnetic impurities. However, the intrinsic magnetic properties of materials can also be modulated by the dimensionality. Here, we report the observation of Kondo effect in a heterodimensional superlattice VS2-VS, in which arrays of the one-dimensional (1D) VS chains are encapsulated by two-dimensional VS2 layers. In such a heterodimensional Kondo superlattice, we observe the typical Kondo effect but with intriguing anisotropic field dependence. This unique anisotropy is determined to originate from the magnetic anisotropy which has the root in the unique 1D chains in the structure, as corroborated by the first-principles calculation. Our results open up a novel avenue of studying exotic correlated physics in heterodimensional materials.

Suggested Citation

  • Qi Feng & Junxi Duan & Ping Wang & Wei Jiang & Huimin Peng & Jinrui Zhong & Jin Cao & Yuqing Hu & Qiuli Li & Qinsheng Wang & Jiadong Zhou & Yugui Yao, 2024. "Heterodimensional Kondo superlattices with strong anisotropy," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49618-x
    DOI: 10.1038/s41467-024-49618-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49618-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49618-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qian Lv & Junyang Tan & Zhijie Wang & Peng Gu & Haiyun Liu & Lingxiao Yu & Yinping Wei & Lin Gan & Bilu Liu & Jia Li & Feiyu Kang & Hui-Ming Cheng & Qihua Xiong & Ruitao Lv, 2023. "Ultrafast charge transfer in mixed-dimensional WO3-x nanowire/WSe2 heterostructures for attomolar-level molecular sensing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. D. Goldhaber-Gordon & Hadas Shtrikman & D. Mahalu & David Abusch-Magder & U. Meirav & M. A. Kastner, 1998. "Kondo effect in a single-electron transistor," Nature, Nature, vol. 391(6663), pages 156-159, January.
    3. Jiadong Zhou & Wenjie Zhang & Yung-Chang Lin & Jin Cao & Yao Zhou & Wei Jiang & Huifang Du & Bijun Tang & Jia Shi & Bingyan Jiang & Xun Cao & Bo Lin & Qundong Fu & Chao Zhu & Wei Guo & Yizhong Huang &, 2022. "Heterodimensional superlattice with in-plane anomalous Hall effect," Nature, Nature, vol. 609(7925), pages 46-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xudong Xiao & Kyaw Zin Latt & Jue Gong & Taewoo Kim & Justin G. Connell & Yuzi Liu & H. Christopher Fry & John E. Pearson & Owen S. Wostoupal & Mengyuan Li & Calvin Soldan & Zhenzhen Yang & Richard D., 2024. "Light-induced Kondo-like exciton-spin interaction in neodymium(II) doped hybrid perovskite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. C. Piquard & P. Glidic & C. Han & A. Aassime & A. Cavanna & U. Gennser & Y. Meir & E. Sela & A. Anthore & F. Pierre, 2023. "Observing the universal screening of a Kondo impurity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hualiang Lv & Yuxing Yao & Mingyue Yuan & Guanyu Chen & Yuchao Wang & Longjun Rao & Shucong Li & Ufuoma I. Kara & Robert L. Dupont & Cheng Zhang & Boyuan Chen & Bo Liu & Xiaodi Zhou & Renbing Wu & Sol, 2024. "Functional nanoporous graphene superlattice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Wei Ai & Fuyang Chen & Zhaochao Liu & Xixi Yuan & Lei Zhang & Yuyu He & Xinyue Dong & Huixia Fu & Feng Luo & Mingxun Deng & Ruiqiang Wang & Jinxiong Wu, 2024. "Observation of giant room-temperature anisotropic magnetoresistance in the topological insulator β-Ag2Te," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Kenji Shibata & Masaki Yoshida & Kazuhiko Hirakawa & Tomohiro Otsuka & Satria Zulkarnaen Bisri & Yoshihiro Iwasa, 2023. "Single PbS colloidal quantum dot transistors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Annika Kurzmann & Yaakov Kleeorin & Chuyao Tong & Rebekka Garreis & Angelika Knothe & Marius Eich & Christopher Mittag & Carolin Gold & Folkert Kornelis Vries & Kenji Watanabe & Takashi Taniguchi & Vl, 2021. "Kondo effect and spin–orbit coupling in graphene quantum dots," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    7. Qian Lv & Junyang Tan & Zhijie Wang & Peng Gu & Haiyun Liu & Lingxiao Yu & Yinping Wei & Lin Gan & Bilu Liu & Jia Li & Feiyu Kang & Hui-Ming Cheng & Qihua Xiong & Ruitao Lv, 2023. "Ultrafast charge transfer in mixed-dimensional WO3-x nanowire/WSe2 heterostructures for attomolar-level molecular sensing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49618-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.