IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42856-5.html
   My bibliography  Save this article

The nature and nurture of network evolution

Author

Listed:
  • Bin Zhou

    (Nanjing University of Information Science and Technology)

  • Petter Holme

    (Aalto University
    Kobe University)

  • Zaiwu Gong

    (Nanjing University of Information Science and Technology)

  • Choujun Zhan

    (South China Normal University)

  • Yao Huang

    (Nanfang College Guangzhou)

  • Xin Lu

    (National University of Defense Technology)

  • Xiangyi Meng

    (Northeastern University
    Northwestern University)

Abstract

Although the origin of the fat-tail characteristic of the degree distribution in complex networks has been extensively researched, the underlying cause of the degree distribution characteristic across the complete range of degrees remains obscure. Here, we propose an evolution model that incorporates only two factors: the node’s weight, reflecting its innate attractiveness (nature), and the node’s degree, reflecting the external influences (nurture). The proposed model provides a good fit for degree distributions and degree ratio distributions of numerous real-world networks and reproduces their evolution processes. Our results indicate that the nurture factor plays a dominant role in the evolution of social networks. In contrast, the nature factor plays a dominant role in the evolution of non-social networks, suggesting that whether nodes are people determines the dominant factor influencing the evolution of real-world networks.

Suggested Citation

  • Bin Zhou & Petter Holme & Zaiwu Gong & Choujun Zhan & Yao Huang & Xin Lu & Xiangyi Meng, 2023. "The nature and nurture of network evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42856-5
    DOI: 10.1038/s41467-023-42856-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42856-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42856-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Petter Holme, 2019. "Rare and everywhere: Perspectives on scale-free networks," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    3. Chaoming Song & Shlomo Havlin & Hernán A. Makse, 2005. "Self-similarity of complex networks," Nature, Nature, vol. 433(7024), pages 392-395, January.
    4. Nicolò Pagan & Wenjun Mei & Cheng Li & Florian Dörfler, 2021. "A meritocratic network formation model for the rise of social media influencers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Fleming, Sean W., 2021. "Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Partida, Alberto & Gerassis, Saki & Criado, Regino & Romance, Miguel & Giráldez, Eduardo & Taboada, Javier, 2022. "The chaotic, self-similar and hierarchical patterns in Bitcoin and Ethereum price series," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Jiang, Xiong-Fei & Xiong, Long & Bai, Ling & Lin, Jie & Zhang, Jing-Feng & Yan, Kun & Zhu, Jia-Zhen & Zheng, Bo & Zheng, Jian-Jun, 2022. "Structure and dynamics of human complication-disease network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Koponen, Ismo T. & Palmgren, Elina & Keski-Vakkuri, Esko, 2021. "Characterising heavy-tailed networks using q-generalised entropy and q-adjacency kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    6. Johnston, Josh & Andersen, Tim, 2022. "Random processes with high variance produce scale free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Valero, Jordi & Pérez-Casany, Marta & Duarte-López, Ariel, 2022. "The Zipf-Polylog distribution: Modeling human interactions through social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Goldrosen, Nicholas, 2024. "Is corrections officers' use of illegal force networked? Network structure, brokerage, and key players in the New York City Department of Correction," Journal of Criminal Justice, Elsevier, vol. 92(C).
    9. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    10. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    11. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    12. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    13. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    14. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    15. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    16. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    17. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    18. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    19. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    20. Ikeda, Nobutoshi, 2020. "Fractal networks induced by movements of random walkers on a tree graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42856-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.