IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v603y2022ics037843712200454x.html
   My bibliography  Save this article

The Zipf-Polylog distribution: Modeling human interactions through social networks

Author

Listed:
  • Valero, Jordi
  • Pérez-Casany, Marta
  • Duarte-López, Ariel

Abstract

The Zipf distribution attracts considerable attention because it helps describe data from natural as well as man-made systems. Nevertheless, in most of the cases the Zipf is only appropriate to fit data in the upper tail. This is why it is important to dispose of Zipf extensions that allow to fit the data in its entire range. In this paper, we introduce the Zipf-Polylog family of distributions as a two-parameter generalization of the Zipf. The extended family contains the Zipf, the geometric, the logarithmic series and the shifted negative binomial with two successes, as particular distributions. We deduce important properties of the new family and demonstrate its suitability by analyzing the degree sequence of two real networks in all its range.

Suggested Citation

  • Valero, Jordi & Pérez-Casany, Marta & Duarte-López, Ariel, 2022. "The Zipf-Polylog distribution: Modeling human interactions through social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  • Handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s037843712200454x
    DOI: 10.1016/j.physa.2022.127680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200454X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zornig, Peter & Altmann, Gabriel, 1995. "Unified representation of Zipf distributions," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 461-473, April.
    2. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    3. Duarte-López, Ariel & Pérez-Casany, Marta & Valero, Jordi, 2020. "The Zipf–Poisson-stopped-sum distribution with an application for modeling the degree sequence of social networks," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    4. Chacoma, Andrés & Zanette, Damián H., 2021. "Word frequency–rank relationship in tagged texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    5. Asif, Muhammad & Hussain, Zawar & Asghar, Zahid & Hussain, Muhammad Irfan & Raftab, Mariya & Shah, Said Farooq & Khan, Akbar Ali, 2021. "A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    6. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Petter Holme, 2019. "Rare and everywhere: Perspectives on scale-free networks," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    8. Justin S. Dyer & Art B. Owen, 2012. "Correct Ordering in the Zipf--Poisson Ensemble," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1510-1517, December.
    9. Assistant Professor G. Christopher Crawford & Professor Bill McKelvey, 2018. "Using maximum likelihood estimation methods and complexity science concepts to research power law-distributed phenomena," Chapters, in: Eve Mitleton-Kelly & Alexandros Paraskevas & Christopher Day (ed.), Handbook of Research Methods in Complexity Science, chapter 12, pages 227-253, Edward Elgar Publishing.
    10. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhenhua & Ren, Ming & Gao, Dong & Li, Zhuang, 2023. "A Zipf's law-based text generation approach for addressing imbalance in entity extraction," Journal of Informetrics, Elsevier, vol. 17(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleming, Sean W., 2021. "Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    2. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Bin Zhou & Petter Holme & Zaiwu Gong & Choujun Zhan & Yao Huang & Xin Lu & Xiangyi Meng, 2023. "The nature and nurture of network evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Jiang, Xiong-Fei & Xiong, Long & Bai, Ling & Lin, Jie & Zhang, Jing-Feng & Yan, Kun & Zhu, Jia-Zhen & Zheng, Bo & Zheng, Jian-Jun, 2022. "Structure and dynamics of human complication-disease network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Koponen, Ismo T. & Palmgren, Elina & Keski-Vakkuri, Esko, 2021. "Characterising heavy-tailed networks using q-generalised entropy and q-adjacency kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    6. Johnston, Josh & Andersen, Tim, 2022. "Random processes with high variance produce scale free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Duarte-López, Ariel & Pérez-Casany, Marta & Valero, Jordi, 2020. "The Zipf–Poisson-stopped-sum distribution with an application for modeling the degree sequence of social networks," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    8. Goldrosen, Nicholas, 2024. "Is corrections officers' use of illegal force networked? Network structure, brokerage, and key players in the New York City Department of Correction," Journal of Criminal Justice, Elsevier, vol. 92(C).
    9. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    10. Kwame Boamah‐Addo & Tomasz J. Kozubowski & Anna K. Panorska, 2023. "A discrete truncated Zipf distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 156-187, May.
    11. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    12. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    13. Jiashun Jin & Zheng Tracy Ke & Shengming Luo, 2022. "Improvements on SCORE, Especially for Weak Signals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 127-162, June.
    14. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    15. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    16. Ho-Chun Herbert Chang & Brooke Harrington & Feng Fu & Daniel Rockmore, 2023. "Complex Systems of Secrecy: The Offshore Networks of Oligarchs," Papers 2303.03371, arXiv.org.
    17. Saxena, Rakhi & Kaur, Sharanjit & Bhatnagar, Vasudha, 2019. "Identifying similar networks using structural hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Luca Braghieri & Ro'ee Levy & Alexey Makarin, 2022. "Social Media and Mental Health," American Economic Review, American Economic Association, vol. 112(11), pages 3660-3693, November.
    19. Shang, Yilun, 2021. "Generalized k-cores of networks under attack with limited knowledge," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Unnikrishnan Nair, N. & Vineshkumar, B., 2022. "Modelling informetric data using quantile functions," Journal of Informetrics, Elsevier, vol. 16(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:603:y:2022:i:c:s037843712200454x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.