IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v596y2022ics0378437122001789.html
   My bibliography  Save this article

Power law dynamics in genealogical graphs

Author

Listed:
  • Martins, Francisco Leonardo Bezerra
  • do Nascimento, José Cláudio

Abstract

Several populational networks present complex topologies when implemented in evolutionary algorithms. A common feature of these topologies is the emergence of a power law. Power law behavior with different scaling factors can also be observed in genealogical networks, but we still cannot satisfactorily describe its dynamics or its relation to population evolution over time. In this paper, we use an algorithm to measure the impact of individuals in several numerical populations and study its dynamics of evolution through nonextensive statistics. Like this, we show evidence that the observed emergence of power law has a dynamic behavior over time. This dynamic development can be described using a family of q-exponential distributions whose parameters are time-dependent and follow a specific pattern. We also show evidence that elitism significantly influences the power law scaling factors observed. These results imply that the different power law shapes and deviations observed in genealogical networks are static images of a time-dependent dynamic development that can be satisfactorily described using q-exponential distributions.

Suggested Citation

  • Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  • Handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001789
    DOI: 10.1016/j.physa.2022.127174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001789
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    2. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    3. Kaizoji, Taisei, 2004. "Inflation and deflation in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 662-668.
    4. Kaizoji, Taisei, 2006. "An interacting-agent model of financial markets from the viewpoint of nonextensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 109-113.
    5. Politi, Mauro & Scalas, Enrico, 2008. "Fitting the empirical distribution of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2025-2034.
    6. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    8. D'aniel Kondor & M'arton P'osfai & Istv'an Csabai & G'abor Vattay, 2013. "Do the rich get richer? An empirical analysis of the BitCoin transaction network," Papers 1308.3892, arXiv.org, revised Mar 2014.
    9. Andrew R. Solow & Christopher J. Costello & Michael B. Ward, 2003. "Testing the power law model for discrete size data," Monash Economics Working Papers archive-16, Monash University, Department of Economics.
    10. Cajueiro, Daniel O., 2006. "A note on the relevance of the q-exponential function in the context of intertemporal choices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 385-388.
    11. Oikonomou, Th. & Provata, A. & Tirnakli, U., 2008. "Nonextensive statistical approach to non-coding human DNA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2653-2659.
    12. Takahashi, Taiki & Oono, Hidemi & Radford, Mark H.B., 2008. "Psychophysics of time perception and intertemporal choice models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2066-2074.
    13. Per O. Seglen, 1992. "The skewness of science," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 43(9), pages 628-638, October.
    14. Yamada, Hiroaki S. & Iguchi, Kazumoto, 2008. "q-exponential fitting for distributions of family names," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1628-1636.
    15. Dániel Kondor & Márton Pósfai & István Csabai & Gábor Vattay, 2014. "Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    16. Briggs, Keith & Beck, Christian, 2007. "Modelling train delays with q-exponential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 498-504.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Cook & Sanjeeb Dash & Ricardo Fukasawa & Marcos Goycoolea, 2009. "Numerically Safe Gomory Mixed-Integer Cuts," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 641-649, November.
    2. Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
    3. Barbato, Michele & Gouveia, Luís, 2024. "The Hamiltonian p-median problem: Polyhedral results and branch-and-cut algorithms," European Journal of Operational Research, Elsevier, vol. 316(2), pages 473-487.
    4. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    5. Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.
    6. Ayana T Aspembitova & Ling Feng & Lock Yue Chew, 2021. "Behavioral structure of users in cryptocurrency market," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-19, January.
    7. Alexandre Bovet & Carlo Campajola & Jorge F. Lazo & Francesco Mottes & Iacopo Pozzana & Valerio Restocchi & Pietro Saggese & Nicol'o Vallarano & Tiziano Squartini & Claudio J. Tessone, 2018. "Network-based indicators of Bitcoin bubbles," Papers 1805.04460, arXiv.org.
    8. Malaguti, Enrico & Martello, Silvano & Santini, Alberto, 2018. "The traveling salesman problem with pickups, deliveries, and draft limits," Omega, Elsevier, vol. 74(C), pages 50-58.
    9. Carlo Campajola & Marco D'Errico & Claudio J. Tessone, 2022. "MicroVelocity: rethinking the Velocity of Money for digital currencies," Papers 2201.13416, arXiv.org, revised May 2023.
    10. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    11. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    12. Ke Wu & Spencer Wheatley & Didier Sornette, 2018. "Classification of cryptocurrency coins and tokens by the dynamics of their market capitalisations," Papers 1803.03088, arXiv.org, revised May 2018.
    13. Ladislav Kristoufek, 2015. "What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    14. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    15. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
    16. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    17. Marjan Marzban & Qian-Ping Gu & Xiaohua Jia, 2016. "New analysis and computational study for the planar connected dominating set problem," Journal of Combinatorial Optimization, Springer, vol. 32(1), pages 198-225, July.
    18. Nick James & Kevin Chin, 2021. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Papers 2111.11022, arXiv.org, revised Jan 2022.
    19. Young-Ho Eom & Santo Fortunato, 2011. "Characterizing and Modeling Citation Dynamics," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-7, September.
    20. Giancarlo Ruocco & Cinzia Daraio, 2013. "An empirical approach to compare the performance of heterogeneous academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 601-625, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.