IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42777-3.html
   My bibliography  Save this article

Striatum-projecting prefrontal cortex neurons support working memory maintenance

Author

Listed:
  • Maria Wilhelm

    (University of Zurich
    University of Zurich and ETH Zurich
    ETH Zurich)

  • Yaroslav Sych

    (University of Zurich
    University of Strasbourg)

  • Aleksejs Fomins

    (University of Zurich
    University of Zurich and ETH Zurich)

  • José Luis Alatorre Warren

    (University of Zurich
    University of Oslo)

  • Christopher Lewis

    (University of Zurich)

  • Laia Serratosa Capdevila

    (University of Zurich)

  • Roman Boehringer

    (University of Zurich and ETH Zurich)

  • Elizabeth A. Amadei

    (University of Zurich and ETH Zurich)

  • Benjamin Grewe

    (University of Zurich and ETH Zurich
    University of Zurich and ETH Zurich
    University of Zurich)

  • Eoin C. O’Connor

    (Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd)

  • Benjamin J. Hall

    (Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd
    H. Lundbeck A/S)

  • Fritjof Helmchen

    (University of Zurich
    University of Zurich and ETH Zurich
    University of Zurich)

Abstract

Neurons in the medial prefrontal cortex (mPFC) are functionally linked to working memory (WM) but how distinct projection pathways contribute to WM remains unclear. Based on optical recordings, optogenetic perturbations, and pharmacological interventions in male mice, we report here that dorsomedial striatum (dmStr)-projecting mPFC neurons are essential for WM maintenance, but not encoding or retrieval, in a T-maze spatial memory task. Fiber photometry of GCaMP6m-labeled mPFC→dmStr neurons revealed strongest activity during the maintenance period, and optogenetic inhibition of these neurons impaired performance only when applied during this period. Conversely, enhancing mPFC→dmStr pathway activity—via pharmacological suppression of HCN1 or by optogenetic activation during the maintenance period—alleviated WM impairment induced by NMDA receptor blockade. Moreover, cellular-resolution miniscope imaging revealed that >50% of mPFC→dmStr neurons are active during WM maintenance and that this subpopulation is distinct from neurons active during encoding and retrieval. In all task periods, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance.

Suggested Citation

  • Maria Wilhelm & Yaroslav Sych & Aleksejs Fomins & José Luis Alatorre Warren & Christopher Lewis & Laia Serratosa Capdevila & Roman Boehringer & Elizabeth A. Amadei & Benjamin Grewe & Eoin C. O’Connor , 2023. "Striatum-projecting prefrontal cortex neurons support working memory maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42777-3
    DOI: 10.1038/s41467-023-42777-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42777-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42777-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sevil Duvarci & Eleanor H. Simpson & Gaby Schneider & Eric R. Kandel & Jochen Roeper & Torfi Sigurdsson, 2018. "Impaired recruitment of dopamine neurons during working memory in mice with striatal D2 receptor overexpression," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Guohong Cui & Sang Beom Jun & Xin Jin & Michael D. Pham & Steven S. Vogel & David M. Lovinger & Rui M. Costa, 2013. "Concurrent activation of striatal direct and indirect pathways during action initiation," Nature, Nature, vol. 494(7436), pages 238-242, February.
    3. Torfi Sigurdsson & Kimberly L. Stark & Maria Karayiorgou & Joseph A. Gogos & Joshua A. Gordon, 2010. "Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia," Nature, Nature, vol. 464(7289), pages 763-767, April.
    4. Victoria M. Bajo & Fernando R. Nodal & Clio Korn & Alexandra O. Constantinescu & Edward O. Mann & Edward S. Boyden & Andrew J. King, 2019. "Silencing cortical activity during sound-localization training impairs auditory perceptual learning," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Timothy Spellman & Mattia Rigotti & Susanne E. Ahmari & Stefano Fusi & Joseph A. Gogos & Joshua A. Gordon, 2015. "Hippocampal–prefrontal input supports spatial encoding in working memory," Nature, Nature, vol. 522(7556), pages 309-314, June.
    6. Min Wang & Nao J. Gamo & Yang Yang & Lu E. Jin & Xiao-Jing Wang & Mark Laubach & James A. Mazer & Daeyeol Lee & Amy F. T. Arnsten, 2011. "Neuronal basis of age-related working memory decline," Nature, Nature, vol. 476(7359), pages 210-213, August.
    7. Benjamin F. Grewe & Jan Gründemann & Lacey J. Kitch & Jerome A. Lecoq & Jones G. Parker & Jesse D. Marshall & Margaret C. Larkin & Pablo E. Jercog & Francois Grenier & Jin Zhong Li & Andreas Lüthi & M, 2017. "Neural ensemble dynamics underlying a long-term associative memory," Nature, Nature, vol. 543(7647), pages 670-675, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Takahiro Shimizu & Stuart G. Nayar & Matthew Swire & Yi Jiang & Matthew Grist & Malte Kaller & Cassandra Sampaio Baptista & David M. Bannerman & Heidi Johansen-Berg & Katsutoshi Ogasawara & Koujiro To, 2023. "Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Irina Pochinok & Tristan M. Stöber & Jochen Triesch & Mattia Chini & Ileana L. Hanganu-Opatz, 2024. "A developmental increase of inhibition promotes the emergence of hippocampal ripples," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Sean C. Piantadosi & Elizabeth E. Manning & Brittany L. Chamberlain & James Hyde & Zoe LaPalombara & Nicholas M. Bannon & Jamie L. Pierson & Vijay M. K Namboodiri & Susanne E. Ahmari, 2024. "Hyperactivity of indirect pathway-projecting spiny projection neurons promotes compulsive behavior," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. P. Dylan Rich & Stephan Yves Thiberge & Benjamin B. Scott & Caiying Guo & D. Gowanlock R. Tervo & Carlos D. Brody & Alla Y. Karpova & Nathaniel D. Daw & David W. Tank, 2024. "Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Miguel Skirzewski & Oren Princz-Lebel & Liliana German-Castelan & Alycia M. Crooks & Gerard Kyungwook Kim & Sophie Henke Tarnow & Amy Reichelt & Sara Memar & Daniel Palmer & Yulong Li & R. Jane Rylett, 2022. "Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    10. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Armando G. Salinas & Jeong Oen Lee & Shana M. Augustin & Shiliang Zhang & Tommaso Patriarchi & Lin Tian & Marisela Morales & Yolanda Mateo & David M. Lovinger, 2023. "Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Sonia Cavaliere & Bilal R Malik & James J L Hodge, 2013. "KCNQ Channels Regulate Age-Related Memory Impairment," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-8, April.
    13. Himanshu Gangal & Xueyi Xie & Zhenbo Huang & Yifeng Cheng & Xuehua Wang & Jiayi Lu & Xiaowen Zhuang & Amanda Essoh & Yufei Huang & Ruifeng Chen & Laura N. Smith & Rachel J. Smith & Jun Wang, 2023. "Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Anna J. Bowen & Y. Waterlily Huang & Jane Y. Chen & Jordan L. Pauli & Carlos A. Campos & Richard D. Palmiter, 2023. "Topographic representation of current and future threats in the mouse nociceptive amygdala," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Masanori Nomoto & Emi Murayama & Shuntaro Ohno & Reiko Okubo-Suzuki & Shin-ichi Muramatsu & Kaoru Inokuchi, 2022. "Hippocampus as a sorter and reverberatory integrator of sensory inputs," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Bruton, Oliver J., 2021. "Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von Economo neuron," Intelligence, Elsevier, vol. 86(C).
    18. M. Angeles Rabadan & Estanislao Daniel De La Cruz & Sneha B. Rao & Yannan Chen & Cheng Gong & Gregg Crabtree & Bin Xu & Sander Markx & Joseph A. Gogos & Rafael Yuste & Raju Tomer, 2022. "An in vitro model of neuronal ensembles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Steven Schepanski & Mattia Chini & Veronika Sternemann & Christopher Urbschat & Kristin Thiele & Ting Sun & Yu Zhao & Mareike Poburski & Anna Woestemeier & Marie-Theres Thieme & Dimitra E. Zazara & Ma, 2022. "Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Brian P. Rummell & Solmaz Bikas & Susanne S. Babl & Joseph A. Gogos & Torfi Sigurdsson, 2023. "Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42777-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.