IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42763-9.html
   My bibliography  Save this article

Distinct transcriptomic profiles in children prior to the appearance of type 1 diabetes-linked islet autoantibodies and following enterovirus infection

Author

Listed:
  • Jake Lin

    (Tampere University and Tays Cancer Centre
    Tampere University
    University of Helsinki
    Karolinska Institute)

  • Elaheh Moradi

    (Tampere University and Tays Cancer Centre
    University of Eastern Finland)

  • Karoliina Salenius

    (Tampere University and Tays Cancer Centre)

  • Suvi Lehtipuro

    (Tampere University and Tays Cancer Centre)

  • Tomi Häkkinen

    (Tampere University and Tays Cancer Centre)

  • Jutta E. Laiho

    (Tampere University)

  • Sami Oikarinen

    (Tampere University)

  • Sofia Randelin

    (Tampere University and Tays Cancer Centre)

  • Hemang M. Parikh

    (University of South Florida)

  • Jeffrey P. Krischer

    (University of South Florida)

  • Jorma Toppari

    (University of Turku
    Turku University Hospital)

  • Åke Lernmark

    (Lund University CRC, Skåne University Hospital)

  • Joseph F. Petrosino

    (Baylor College of Medicine)

  • Nadim J. Ajami

    (Baylor College of Medicine
    The University of Texas MD Anderson Cancer Center)

  • Jin-Xiong She

    (Jinfiniti Precision Medicine, Inc.)

  • William A. Hagopian

    (Pacific Northwest Research Institute
    University of Washington)

  • Marian J. Rewers

    (University of Colorado)

  • Richard E. Lloyd

    (Baylor College of Medicine)

  • Kirsi J. Rautajoki

    (Tampere University and Tays Cancer Centre)

  • Heikki Hyöty

    (Tampere University
    Fimlab Laboratories)

  • Matti Nykter

    (Tampere University and Tays Cancer Centre
    Foundation for the Finnish Cancer Institute)

Abstract

Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.

Suggested Citation

  • Jake Lin & Elaheh Moradi & Karoliina Salenius & Suvi Lehtipuro & Tomi Häkkinen & Jutta E. Laiho & Sami Oikarinen & Sofia Randelin & Hemang M. Parikh & Jeffrey P. Krischer & Jorma Toppari & Åke Lernmar, 2023. "Distinct transcriptomic profiles in children prior to the appearance of type 1 diabetes-linked islet autoantibodies and following enterovirus infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42763-9
    DOI: 10.1038/s41467-023-42763-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42763-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42763-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Youdong Pan & Tian Tian & Chang Ook Park & Serena Y. Lofftus & Shenglin Mei & Xing Liu & Chi Luo & John T. O’Malley & Ahmed Gehad & Jessica E. Teague & Sherrie J. Divito & Robert Fuhlbrigge & Pere Pui, 2017. "Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism," Nature, Nature, vol. 543(7644), pages 252-256, March.
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    3. Christopher J. Stewart & Nadim J. Ajami & Jacqueline L. O’Brien & Diane S. Hutchinson & Daniel P. Smith & Matthew C. Wong & Matthew C. Ross & Richard E. Lloyd & HarshaVardhan Doddapaneni & Ginger A. M, 2018. "Temporal development of the gut microbiome in early childhood from the TEDDY study," Nature, Nature, vol. 562(7728), pages 583-588, October.
    4. Daniel Taliun & Daniel N. Harris & Michael D. Kessler & Jedidiah Carlson & Zachary A. Szpiech & Raul Torres & Sarah A. Gagliano Taliun & André Corvelo & Stephanie M. Gogarten & Hyun Min Kang & Achille, 2021. "Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program," Nature, Nature, vol. 590(7845), pages 290-299, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    3. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    8. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    9. Ruairi C. Robertson & Thaddeus J. Edens & Lynnea Carr & Kuda Mutasa & Ethan K. Gough & Ceri Evans & Hyun Min Geum & Iman Baharmand & Sandeep K. Gill & Robert Ntozini & Laura E. Smith & Bernard Chasekw, 2023. "The gut microbiome and early-life growth in a population with high prevalence of stunting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    11. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    12. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    13. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    14. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    15. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    16. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Sean A. Misek & Aaron Fultineer & Jeremie Kalfon & Javad Noorbakhsh & Isabella Boyle & Priyanka Roy & Joshua Dempster & Lia Petronio & Katherine Huang & Alham Saadat & Thomas Green & Adam Brown & John, 2024. "Germline variation contributes to false negatives in CRISPR-based experiments with varying burden across ancestries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    19. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    20. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42763-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.