IDEAS home Printed from https://ideas.repec.org/p/fip/fedpwp/95158.html
   My bibliography  Save this paper

One Threshold Doesn’t Fit All: Tailoring Machine Learning Predictions of Consumer Default for Lower-Income Areas

Author

Listed:

Abstract

Modeling advances create credit scores that predict default better overall, but raise concerns about their effect on protected groups. Focusing on low- and moderate-income (LMI) areas, we use an approach from the Fairness in Machine Learning literature — fairness constraints via group-specific prediction thresholds — and show that gaps in true positive rates (% of non-defaulters identified by the model as such) can be significantly reduced if separate thresholds can be chosen for non-LMI and LMI tracts. However, the reduction isn’t free as more defaulters are classified as good risks, potentially affecting both consumers’ welfare and lenders’ profits. The trade-offs become more favorable if the introduction of fairness constraints is paired with the introduction of more sophisticated models, suggesting a way forward. Overall, our results highlight the potential benefits of explicitly considering sensitive attributes in the design of loan approval policies and the potential benefits of output-based approaches to fairness in lending.

Suggested Citation

  • Vitaly Meursault & Daniel Moulton & Larry Santucci & Nathan Schor, 2022. "One Threshold Doesn’t Fit All: Tailoring Machine Learning Predictions of Consumer Default for Lower-Income Areas," Working Papers 22-39, Federal Reserve Bank of Philadelphia.
  • Handle: RePEc:fip:fedpwp:95158
    DOI: 10.21799/frbp.wp.2022.39
    as

    Download full text from publisher

    File URL: https://www.philadelphiafed.org/-/media/frbp/assets/working-papers/2022/wp22-39.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.21799/frbp.wp.2022.39?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," NBER Working Papers 26165, National Bureau of Economic Research, Inc.
    2. Mikhed, Vyacheslav & Vogan, Michael, 2018. "How data breaches affect consumer credit," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 192-207.
    3. Laura Blattner & Scott Nelson, 2021. "How Costly is Noise? Data and Disparities in Consumer Credit," Papers 2105.07554, arXiv.org.
    4. Robert B. Avery & Kenneth P. Brevoort & Glenn Canner, 2012. "Does Credit Scoring Produce a Disparate Impact?," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 40, pages 65-114, December.
    5. Blattner, Laura & Nelson, Scott, 2021. "How Costly Is Noise? Data and Disparities in Consumer Credit," Research Papers 3978, Stanford University, Graduate School of Business.
    6. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    7. Dubravka Ritter & David Skanderson, 2014. "Fair lending analysis of credit cards," Consumer Finance Institute discussion papers 14-2, Federal Reserve Bank of Philadelphia.
    8. Robert B. Avery & Paul S. Calem & Glenn B. Canner, 2003. "An overview of consumer data and credit reporting," Federal Reserve Bulletin, Board of Governors of the Federal Reserve System (U.S.), vol. 89(Feb), pages 47-73, February.
    9. Talia Gillis & Bryce McLaughlin & Jann Spiess, 2021. "On the Fairness of Machine-Assisted Human Decisions," Papers 2110.15310, arXiv.org, revised Sep 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Albanesi & Domonkos F. Vamossy, 2024. "Credit Scores: Performance and Equity," NBER Working Papers 32917, National Bureau of Economic Research, Inc.
    2. Subhadeep Mukhopadhyay, 2021. "InfoGram and Admissible Machine Learning," Papers 2108.07380, arXiv.org, revised Aug 2021.
    3. Eglė Jakučionytė & Swapnil Singh, 2023. "Emergence of subprime lending in minority neighborhoods," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(6), pages 1547-1583, November.
    4. Langenbucher, Katja, 2022. "Consumer credit in the age of AI: Beyond anti-discrimination law," SAFE Working Paper Series 369, Leibniz Institute for Financial Research SAFE.
    5. Olivier Armantier & Sebastian Doerr & Jon Frost & Andreas Fuster & Kelly Shue, 2024. "Nothing to hide? Gender and age differences in willingness to share data," Swiss Finance Institute Research Paper Series 24-99, Swiss Finance Institute.
    6. Hurtado, Agustin & Sakong, Jung, 2022. "The effect of minority bank ownership on minority credit," Working Papers 325, The University of Chicago Booth School of Business, George J. Stigler Center for the Study of the Economy and the State.
    7. Sabrina T. Howell & Theresa Kuchler & David Snitkof & Johannes Stroebel & Jun Wong, 2021. "Lender Automation and Racial Disparities in Credit Access," NBER Working Papers 29364, National Bureau of Economic Research, Inc.
    8. Sabrina T. Howell & Theresa Kuchler & David Snitkof & Johannes Stroebel & Jun Wong, 2021. "Racial Disparities in Access to Small Business Credit: Evidence from the Paycheck Protection Program," CESifo Working Paper Series 9345, CESifo.
    9. Ryan M. Goodstein & Alicia Lloro & Sherrie L.W. Rhine & Jeffrey M. Weinstein, 2021. "What accounts for racial and ethnic differences in credit use?," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 389-416, June.
    10. Nicholas Tenev, 2024. "De-Biasing Models of Biased Decisions: A Comparison of Methods Using Mortgage Application Data," Papers 2405.00910, arXiv.org.
    11. Luca Barbaglia & Sebastiano Manzan & Elisa Tosetti, 2023. "Forecasting Loan Default in Europe with Machine Learning," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 569-596.
    12. Greenwald, Daniel L. & Howell, Sabrina T. & Li, Cangyuan & Yimfor, Emmanuel, 2024. "Regulatory arbitrage or random errors? Implications of race prediction algorithms in fair lending analysis," Journal of Financial Economics, Elsevier, vol. 157(C).
    13. Cusato, Antonio & Castillo, José Luis & IDB Invest, 2023. "Access to Credit and the Expansion of Broadband Internet in Peru," IDB Publications (Working Papers) 12922, Inter-American Development Bank.
    14. Langenbucher, Katja, 2022. "Consumer credit in the age of AI: Beyond anti-discrimination law," LawFin Working Paper Series 42, Goethe University, Center for Advanced Studies on the Foundations of Law and Finance (LawFin).
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    17. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    18. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    19. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    20. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.

    More about this item

    Keywords

    Credit Scores; Group Disparities; Machine Learning; Fairness;
    All these keywords.

    JEL classification:

    • G51 - Financial Economics - - Household Finance - - - Household Savings, Borrowing, Debt, and Wealth
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:95158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beth Paul (email available below). General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.