Autonomous and dynamic precursor selection for solid-state materials synthesis
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-42329-9
Download full text from publisher
References listed on IDEAS
- A. Gilad Kusne & Heshan Yu & Changming Wu & Huairuo Zhang & Jason Hattrick-Simpers & Brian DeCost & Suchismita Sarker & Corey Oses & Cormac Toher & Stefano Curtarolo & Albert V. Davydov & Ritesh Agarw, 2020. "On-the-fly closed-loop materials discovery via Bayesian active learning," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
- Christopher J. Bartel & Samantha L. Millican & Ann M. Deml & John R. Rumptz & William Tumas & Alan W. Weimer & Stephan Lany & Vladan Stevanović & Charles B. Musgrave & Aaron M. Holder, 2018. "Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Benjamin J. Shields & Jason Stevens & Jun Li & Marvin Parasram & Farhan Damani & Jesus I. Martinez Alvarado & Jacob M. Janey & Ryan P. Adams & Abigail G. Doyle, 2021. "Bayesian reaction optimization as a tool for chemical synthesis," Nature, Nature, vol. 590(7844), pages 89-96, February.
- Paul Raccuglia & Katherine C. Elbert & Philip D. F. Adler & Casey Falk & Malia B. Wenny & Aurelio Mollo & Matthias Zeller & Sorelle A. Friedler & Joshua Schrier & Alexander J. Norquist, 2016. "Machine-learning-assisted materials discovery using failed experiments," Nature, Nature, vol. 533(7601), pages 73-76, May.
- Marwin H. S. Segler & Mike Preuss & Mark P. Waller, 2018. "Planning chemical syntheses with deep neural networks and symbolic AI," Nature, Nature, vol. 555(7698), pages 604-610, March.
- Matthew J. McDermott & Shyam S. Dwaraknath & Kristin A. Persson, 2021. "A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jia-Min Lu & Hui-Feng Wang & Qi-Hang Guo & Jian-Wei Wang & Tong-Tong Li & Ke-Xin Chen & Meng-Ting Zhang & Jian-Bo Chen & Qian-Nuan Shi & Yi Huang & Shao-Wen Shi & Guang-Yong Chen & Jian-Zhang Pan & Zh, 2024. "Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
- Zhao, Jingyuan & Feng, Xuning & Wang, Junbin & Lian, Yubo & Ouyang, Minggao & Burke, Andrew F., 2023. "Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks," Applied Energy, Elsevier, vol. 352(C).
- Zhenxing Wang & Yunjun Yu & Kallol Roy & Cheng Gao & Lei Huang, 2023. "The Application of Machine Learning: Controlling the Preparation of Environmental Materials and Carbon Neutrality," IJERPH, MDPI, vol. 20(3), pages 1-4, January.
- Yuanyuan Jiang & Zongwei Yang & Jiali Guo & Hongzhen Li & Yijing Liu & Yanzhi Guo & Menglong Li & Xuemei Pu, 2021. "Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
- Jason Youn & Navneet Rai & Ilias Tagkopoulos, 2022. "Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Naudé, Wim, 2020. "Artificial Intelligence against COVID-19: An Early Review," IZA Discussion Papers 13110, Institute of Labor Economics (IZA).
- Mingyang Wang & Shuai Li & Jike Wang & Odin Zhang & Hongyan Du & Dejun Jiang & Zhenxing Wu & Yafeng Deng & Yu Kang & Peichen Pan & Dan Li & Xiaorui Wang & Xiaojun Yao & Tingjun Hou & Chang-Yu Hsieh, 2024. "ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Li, Jing & Yu, Qian, 2024. "Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective," Journal of Informetrics, Elsevier, vol. 18(1).
- Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Seeram Ramakrishna & Tong-Yi Zhang & Wen-Cong Lu & Quan Qian & Jonathan Sze Choong Low & Jeremy Heiarii Ronald Yune & Daren Zong Loong Tan & Stéphane Bressan & Stefano Sanvito & Surya R. Kalidindi, 2019. "Materials informatics," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2307-2326, August.
- Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Yuqiang Han & Xiaoyang Xu & Chang-Yu Hsieh & Keyan Ding & Hongxia Xu & Renjun Xu & Tingjun Hou & Qiang Zhang & Huajun Chen, 2024. "Retrosynthesis prediction with an iterative string editing model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.
- Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Shingo Harada & Hiroki Takenaka & Tsubasa Ito & Haruki Kanda & Tetsuhiro Nemoto, 2024. "Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024.
"Artificial intelligence and scientific discovery: a model of prioritized search,"
Research Policy, Elsevier, vol. 53(5).
- Ajay K. Agrawal & John McHale & Alexander Oettl, 2023. "Artificial Intelligence and Scientific Discovery: A Model of Prioritized Search," NBER Working Papers 31558, National Bureau of Economic Research, Inc.
- Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Zhang, Xinru & Hou, Lei & Liu, Jiaquan & Yang, Kai & Chai, Chong & Li, Yanhao & He, Sichen, 2022. "Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining," Energy, Elsevier, vol. 254(PB).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42329-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.