IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50617-1.html
   My bibliography  Save this article

Retrosynthesis prediction with an iterative string editing model

Author

Listed:
  • Yuqiang Han

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Xiaoyang Xu

    (Zhejiang University)

  • Chang-Yu Hsieh

    (Zhejiang University)

  • Keyan Ding

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Hongxia Xu

    (Zhejiang University
    Zhejiang University School of Medicine)

  • Renjun Xu

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Tingjun Hou

    (Zhejiang University)

  • Qiang Zhang

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Huajun Chen

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center
    Zhejiang-University-Ant-Group Joint Center for Knowledge Graphs
    Hangzhou Institute of Medicine Chinese Academy of Science)

Abstract

Retrosynthesis is a crucial task in drug discovery and organic synthesis, where artificial intelligence (AI) is increasingly employed to expedite the process. However, existing approaches employ token-by-token decoding methods to translate target molecule strings into corresponding precursors, exhibiting unsatisfactory performance and limited diversity. As chemical reactions typically induce local molecular changes, reactants and products often overlap significantly. Inspired by this fact, we propose reframing single-step retrosynthesis prediction as a molecular string editing task, iteratively refining target molecule strings to generate precursor compounds. Our proposed approach involves a fragment-based generative editing model that uses explicit sequence editing operations. Additionally, we design an inference module with reposition sampling and sequence augmentation to enhance both prediction accuracy and diversity. Extensive experiments demonstrate that our model generates high-quality and diverse results, achieving superior performance with a promising top-1 accuracy of 60.8% on the standard benchmark dataset USPTO-50 K.

Suggested Citation

  • Yuqiang Han & Xiaoyang Xu & Chang-Yu Hsieh & Keyan Ding & Hongxia Xu & Renjun Xu & Tingjun Hou & Qiang Zhang & Huajun Chen, 2024. "Retrosynthesis prediction with an iterative string editing model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50617-1
    DOI: 10.1038/s41467-024-50617-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50617-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50617-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Igor V. Tetko & Pavel Karpov & Ruud Deursen & Guillaume Godin, 2020. "State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Lei Fang & Junren Li & Ming Zhao & Li Tan & Jian-Guang Lou, 2023. "Single-step retrosynthesis prediction by leveraging commonly preserved substructures," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Marwin H. S. Segler & Mike Preuss & Mark P. Waller, 2018. "Planning chemical syntheses with deep neural networks and symbolic AI," Nature, Nature, vol. 555(7698), pages 604-610, March.
    4. Weihe Zhong & Ziduo Yang & Calvin Yu-Chian Chen, 2023. "Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umit V. Ucak & Islambek Ashyrmamatov & Junsu Ko & Juyong Lee, 2022. "Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yu Shee & Haote Li & Pengpeng Zhang & Andrea M. Nikolic & Wenxin Lu & H. Ray Kelly & Vidhyadhar Manee & Sanil Sreekumar & Frederic G. Buono & Jinhua J. Song & Timothy R. Newhouse & Victor S. Batista, 2024. "Site-specific template generative approach for retrosynthetic planning," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yu Wang & Chao Pang & Yuzhe Wang & Junru Jin & Jingjie Zhang & Xiangxiang Zeng & Ran Su & Quan Zou & Leyi Wei, 2023. "Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Weihe Zhong & Ziduo Yang & Calvin Yu-Chian Chen, 2023. "Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Jia-Min Lu & Hui-Feng Wang & Qi-Hang Guo & Jian-Wei Wang & Tong-Tong Li & Ke-Xin Chen & Meng-Ting Zhang & Jian-Bo Chen & Qian-Nuan Shi & Yi Huang & Shao-Wen Shi & Guang-Yong Chen & Jian-Zhang Pan & Zh, 2024. "Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Naudé, Wim, 2020. "Artificial Intelligence against COVID-19: An Early Review," IZA Discussion Papers 13110, Institute of Labor Economics (IZA).
    7. Lei Fang & Junren Li & Ming Zhao & Li Tan & Jian-Guang Lou, 2023. "Single-step retrosynthesis prediction by leveraging commonly preserved substructures," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.
    9. Shingo Harada & Hiroki Takenaka & Tsubasa Ito & Haruki Kanda & Tetsuhiro Nemoto, 2024. "Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    11. Debesh Mishra & Biswajit Mohapatra & Abhaya Sanatan Satpathy & Kamalakanta Muduli & Binayak Mishra & Swagatika Mishra & Upma Paliwal, 2024. "The pandemic COVID-19 and associated challenges with implementation of artificial intelligence (AI) in Indian agriculture," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2715-2729, June.
    12. Itai Levin & Mengjie Liu & Christopher A. Voigt & Connor W. Coley, 2022. "Merging enzymatic and synthetic chemistry with computational synthesis planning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Marcel Rolf Pfeifer, 2021. "Development of a Smart Manufacturing Execution System Architecture for SMEs: A Czech Case Study," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    14. Yasuhiro Yoshikai & Tadahaya Mizuno & Shumpei Nemoto & Hiroyuki Kusuhara, 2024. "Difficulty in chirality recognition for Transformer architectures learning chemical structures from string representations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. M. Saqlain & S. Ali & J. Y. Lee, 2023. "A Monte-Carlo tree search algorithm for the flexible job-shop scheduling in manufacturing systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 548-571, June.
    16. Zhao, Jingyuan & Feng, Xuning & Wang, Junbin & Lian, Yubo & Ouyang, Minggao & Burke, Andrew F., 2023. "Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks," Applied Energy, Elsevier, vol. 352(C).
    17. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    18. Jinho Chang & Jong Chul Ye, 2024. "Bidirectional generation of structure and properties through a single molecular foundation model," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Hang Xiao & Rong Li & Xiaoyang Shi & Yan Chen & Liangliang Zhu & Xi Chen & Lei Wang, 2023. "An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Nathan J. Szymanski & Pragnay Nevatia & Christopher J. Bartel & Yan Zeng & Gerbrand Ceder, 2023. "Autonomous and dynamic precursor selection for solid-state materials synthesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50617-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.