IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53204-6.html
   My bibliography  Save this article

Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day

Author

Listed:
  • Jia-Min Lu

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Hui-Feng Wang

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Qi-Hang Guo

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center
    Zhejiang University)

  • Jian-Wei Wang

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Tong-Tong Li

    (Zhejiang University
    Zhejiang University)

  • Ke-Xin Chen

    (Zhejiang Lab
    The Chinese University of Hong Kong)

  • Meng-Ting Zhang

    (Zhejiang University)

  • Jian-Bo Chen

    (Zhejiang University)

  • Qian-Nuan Shi

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Yi Huang

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Shao-Wen Shi

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Guang-Yong Chen

    (Zhejiang Lab)

  • Jian-Zhang Pan

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Zhan Lu

    (Zhejiang University
    Zhejiang University)

  • Qun Fang

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center
    Zhejiang University)

Abstract

The current throughput of conventional organic chemical synthesis is usually a few experiments for each operator per day. We develop a robotic system for ultra-high-throughput chemical synthesis, online characterization, and large-scale condition screening of photocatalytic reactions, based on the liquid-core waveguide, microfluidic liquid-handling, and artificial intelligence techniques. The system is capable of performing automated reactant mixture preparation, changing, introduction, ultra-fast photocatalytic reactions in seconds, online spectroscopic detection of the reaction product, and screening of different reaction conditions. We apply the system in large-scale screening of 12,000 reaction conditions of a photocatalytic [2 + 2] cycloaddition reaction including multiple continuous and discrete variables, reaching an ultra-high throughput up to 10,000 reaction conditions per day. Based on the data, AI-assisted cross-substrate/photocatalyst prediction is conducted.

Suggested Citation

  • Jia-Min Lu & Hui-Feng Wang & Qi-Hang Guo & Jian-Wei Wang & Tong-Tong Li & Ke-Xin Chen & Meng-Ting Zhang & Jian-Bo Chen & Qian-Nuan Shi & Yi Huang & Shao-Wen Shi & Guang-Yong Chen & Jian-Zhang Pan & Zh, 2024. "Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53204-6
    DOI: 10.1038/s41467-024-53204-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53204-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53204-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vahe Tshitoyan & John Dagdelen & Leigh Weston & Alexander Dunn & Ziqin Rong & Olga Kononova & Kristin A. Persson & Gerbrand Ceder & Anubhav Jain, 2019. "Unsupervised word embeddings capture latent knowledge from materials science literature," Nature, Nature, vol. 571(7763), pages 95-98, July.
    2. Ian W. Davies, 2019. "The digitization of organic synthesis," Nature, Nature, vol. 570(7760), pages 175-181, June.
    3. Roman Kleinmans & Tobias Pinkert & Subhabrata Dutta & Tiffany O. Paulisch & Hyeyun Keum & Constantin G. Daniliuc & Frank Glorius, 2022. "Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer," Nature, Nature, vol. 605(7910), pages 477-482, May.
    4. Jarosław M. Granda & Liva Donina & Vincenza Dragone & De-Liang Long & Leroy Cronin, 2018. "Publisher Correction: Controlling an organic synthesis robot with machine learning to search for new reactivity," Nature, Nature, vol. 562(7728), pages 26-26, October.
    5. Paul Raccuglia & Katherine C. Elbert & Philip D. F. Adler & Casey Falk & Malia B. Wenny & Aurelio Mollo & Matthias Zeller & Sorelle A. Friedler & Joshua Schrier & Alexander J. Norquist, 2016. "Machine-learning-assisted materials discovery using failed experiments," Nature, Nature, vol. 533(7601), pages 73-76, May.
    6. Jarosław M. Granda & Liva Donina & Vincenza Dragone & De-Liang Long & Leroy Cronin, 2018. "Controlling an organic synthesis robot with machine learning to search for new reactivity," Nature, Nature, vol. 559(7714), pages 377-381, July.
    7. Marwin H. S. Segler & Mike Preuss & Mark P. Waller, 2018. "Planning chemical syntheses with deep neural networks and symbolic AI," Nature, Nature, vol. 555(7698), pages 604-610, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Youn & Navneet Rai & Ilias Tagkopoulos, 2022. "Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Hyuk Jun Yoo & Kwan-Young Lee & Donghun Kim & Sang Soo Han, 2024. "OCTOPUS: operation control system for task optimization and job parallelization via a user-optimal scheduler," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Zhao, Jingyuan & Feng, Xuning & Wang, Junbin & Lian, Yubo & Ouyang, Minggao & Burke, Andrew F., 2023. "Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks," Applied Energy, Elsevier, vol. 352(C).
    7. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    8. Nathan J. Szymanski & Pragnay Nevatia & Christopher J. Bartel & Yan Zeng & Gerbrand Ceder, 2023. "Autonomous and dynamic precursor selection for solid-state materials synthesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Yuanyuan Jiang & Zongwei Yang & Jiali Guo & Hongzhen Li & Yijing Liu & Yanzhi Guo & Menglong Li & Xuemei Pu, 2021. "Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Ananthan Nambiar & Tobias Rubel & James McCaull & Jon deVries & Mark Bedau, 2021. "Dropping diversity of products of large US firms: Models and measures," Papers 2110.08367, arXiv.org.
    12. Naudé, Wim, 2020. "Artificial Intelligence against COVID-19: An Early Review," IZA Discussion Papers 13110, Institute of Labor Economics (IZA).
    13. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    14. Gordana Ispirova & Tome Eftimov & Barbara Koroušić Seljak, 2020. "P-NUT: Predicting NUTrient Content from Short Text Descriptions," Mathematics, MDPI, vol. 8(10), pages 1-21, October.
    15. Li, Jing & Yu, Qian, 2024. "Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    16. Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
    17. Seeram Ramakrishna & Tong-Yi Zhang & Wen-Cong Lu & Quan Qian & Jonathan Sze Choong Low & Jeremy Heiarii Ronald Yune & Daren Zong Loong Tan & Stéphane Bressan & Stefano Sanvito & Surya R. Kalidindi, 2019. "Materials informatics," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2307-2326, August.
    18. Zongrui Pei & Junqi Yin & Peter K. Liaw & Dierk Raabe, 2023. "Toward the design of ultrahigh-entropy alloys via mining six million texts," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Shaoshuo Li & Baixing Chen & Hao Chen & Zhen Hua & Yang Shao & Heng Yin & Jianwei Wang, 2021. "Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    20. Jeong, Yoo Kyung & Xie, Qing & Yan, Erjia & Song, Min, 2020. "Examining drug and side effect relation using author–entity pair bipartite networks," Journal of Informetrics, Elsevier, vol. 14(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53204-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.