IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923013132.html
   My bibliography  Save this article

Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks

Author

Listed:
  • Zhao, Jingyuan
  • Feng, Xuning
  • Wang, Junbin
  • Lian, Yubo
  • Ouyang, Minggao
  • Burke, Andrew F.

Abstract

Battery-powered electric vehicles (EVs) are poised to accelerate decarbonization in nearly every aspect of transportation. However, safety issues of commercial lithium-ion batteries related to the faults and failures in real-world applications are still serious concern. Even a small increase in risk during the battery's operational lifetime may evolve into a safety hazard-fire and explosion, named as thermal runaway, after long-term incubation. Modelling and predicting the evolution of nonlinear multiscale electrochemical systems is challenging due to uncertainties in materials and manufacturing processes, dynamic environmental and operating conditions, as well as a lack of high-quality datasets. This challenge is further complicated when solving real-life physical problems with missing and noisy data and uncertain boundary conditions. In this study, we address these challenges by developing a specialized Transformer network architecture called BERTtery (Bidirectional Encoder Representations from Transformers for batteries) based on field data of EVs. By using charging voltage and temperature curves from early cycles before exhibiting symptoms of battery, the two-tower Transformer with temporal-wise encoder and channel-wise encoder is demonstrated as a powerful tool to capture early-warning signals across multiple spatio-temporal scales under a wide range of operating conditions. The method reliably predicts the evolution of faults in battery systems using only data provided by the onboard sensor measurements of battery performance.

Suggested Citation

  • Zhao, Jingyuan & Feng, Xuning & Wang, Junbin & Lian, Yubo & Ouyang, Minggao & Burke, Andrew F., 2023. "Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013132
    DOI: 10.1016/j.apenergy.2023.121949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Marui & Dong, Chaoyu & Xiong, Binyu & Mu, Yunfei & Yu, Xiaodan & Xiao, Qian & Jia, Hongjie, 2022. "STTEWS: A sequential-transformer thermal early warning system for lithium-ion battery safety," Applied Energy, Elsevier, vol. 328(C).
    2. Jie Deng & Chulheung Bae & James Marcicki & Alvaro Masias & Theodore Miller, 2018. "Safety modelling and testing of lithium-ion batteries in electrified vehicles," Nature Energy, Nature, vol. 3(4), pages 261-266, April.
    3. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    4. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Sang-Hoon Park & Paul J. King & Ruiyuan Tian & Conor S. Boland & João Coelho & Chuanfang (John) Zhang & Patrick McBean & Niall McEvoy & Matthias P. Kremer & Dermot Daly & Jonathan N. Coleman & Valeria, 2019. "High areal capacity battery electrodes enabled by segregated nanotube networks," Nature Energy, Nature, vol. 4(7), pages 560-567, July.
    6. Hasnain Hafiz & Kosuke Suzuki & Bernardo Barbiellini & Naruki Tsuji & Naoaki Yabuuchi & Kentaro Yamamoto & Yuki Orikasa & Yoshiharu Uchimoto & Yoshiharu Sakurai & Hiroshi Sakurai & Arun Bansil & Venka, 2021. "Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials," Nature, Nature, vol. 594(7862), pages 213-216, June.
    7. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    8. Yuanfeng Xu & Luis Elcoro & Zhi-Da Song & Benjamin J. Wieder & M. G. Vergniory & Nicolas Regnault & Yulin Chen & Claudia Felser & B. Andrei Bernevig, 2020. "High-throughput calculations of magnetic topological materials," Nature, Nature, vol. 586(7831), pages 702-707, October.
    9. Janise McNair, 2022. "The 6G frequency switch that spares scientific services," Nature, Nature, vol. 606(7912), pages 34-35, June.
    10. Paul Raccuglia & Katherine C. Elbert & Philip D. F. Adler & Casey Falk & Malia B. Wenny & Aurelio Mollo & Matthias Zeller & Sorelle A. Friedler & Joshua Schrier & Alexander J. Norquist, 2016. "Machine-learning-assisted materials discovery using failed experiments," Nature, Nature, vol. 533(7601), pages 73-76, May.
    11. Zoubin Ghahramani, 2015. "Probabilistic machine learning and artificial intelligence," Nature, Nature, vol. 521(7553), pages 452-459, May.
    12. Marwin H. S. Segler & Mike Preuss & Mark P. Waller, 2018. "Planning chemical syntheses with deep neural networks and symbolic AI," Nature, Nature, vol. 555(7698), pages 604-610, March.
    13. Dapai Shi & Jingyuan Zhao & Zhenghong Wang & Heng Zhao & Chika Eze & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Deep Learning for Co-Estimation of Battery State of Charge and State of Health," Energies, MDPI, vol. 16(9), pages 1-19, April.
    14. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    15. Hong, Jichao & Wang, Zhenpo & Chen, Wen & Yao, Yongtao, 2019. "Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jianyu & Lu, Wei, 2022. "Sparse data machine learning for battery health estimation and optimal design incorporating material characteristics," Applied Energy, Elsevier, vol. 307(C).
    2. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    6. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Zewen Meng & Tiezhu Zhang & Hongxin Zhang & Qinghai Zhao & Jian Yang, 2021. "Energy Management Strategy for an Electromechanical-Hydraulic Coupled Power Electric Vehicle Considering the Optimal Speed Threshold," Energies, MDPI, vol. 14(17), pages 1-12, August.
    8. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.
    11. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    12. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
    13. Jichao Hong & Fengwei Liang & Xun Gong & Xiaoming Xu & Quanqing Yu, 2022. "Accurate State of Charge Estimation for Real-World Battery Systems Using a Novel Grid Search and Cross Validated Optimised LSTM Neural Network," Energies, MDPI, vol. 15(24), pages 1-14, December.
    14. Zhang, Chen & Wang, Hongmin & Wu, Lifeng, 2023. "Life prediction model for lithium-ion battery considering fast-charging protocol," Energy, Elsevier, vol. 263(PE).
    15. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Ibraheem, Rasheed & Wu, Yue & Lyons, Terry & dos Reis, Gonçalo, 2023. "Early prediction of Lithium-ion cell degradation trajectories using signatures of voltage curves up to 4-minute sub-sampling rates," Applied Energy, Elsevier, vol. 352(C).
    17. Thelen, Adam & Li, Meng & Hu, Chao & Bekyarova, Elena & Kalinin, Sergey & Sanghadasa, Mohan, 2022. "Augmented model-based framework for battery remaining useful life prediction," Applied Energy, Elsevier, vol. 324(C).
    18. Chen, Zhang & Chen, Liqun & Ma, Zhengwei & Xu, Kangkang & Zhou, Yu & Shen, Wenjing, 2023. "Joint modeling for early predictions of Li-ion battery cycle life and degradation trajectory," Energy, Elsevier, vol. 277(C).
    19. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    20. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.