IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v590y2021i7844d10.1038_s41586-021-03213-y.html
   My bibliography  Save this article

Bayesian reaction optimization as a tool for chemical synthesis

Author

Listed:
  • Benjamin J. Shields

    (Princeton University)

  • Jason Stevens

    (Chemical Process Development, Bristol-Myers Squibb)

  • Jun Li

    (Chemical Process Development, Bristol-Myers Squibb)

  • Marvin Parasram

    (Princeton University)

  • Farhan Damani

    (Princeton University)

  • Jesus I. Martinez Alvarado

    (Princeton University)

  • Jacob M. Janey

    (Chemical Process Development, Bristol-Myers Squibb)

  • Ryan P. Adams

    (Princeton University)

  • Abigail G. Doyle

    (Princeton University)

Abstract

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4–9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.

Suggested Citation

  • Benjamin J. Shields & Jason Stevens & Jun Li & Marvin Parasram & Farhan Damani & Jesus I. Martinez Alvarado & Jacob M. Janey & Ryan P. Adams & Abigail G. Doyle, 2021. "Bayesian reaction optimization as a tool for chemical synthesis," Nature, Nature, vol. 590(7844), pages 89-96, February.
  • Handle: RePEc:nat:nature:v:590:y:2021:i:7844:d:10.1038_s41586-021-03213-y
    DOI: 10.1038/s41586-021-03213-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03213-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03213-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Kelsey L. Snapp & Benjamin Verdier & Aldair E. Gongora & Samuel Silverman & Adedire D. Adesiji & Elise F. Morgan & Timothy J. Lawton & Emily Whiting & Keith A. Brown, 2024. "Superlative mechanical energy absorbing efficiency discovered through self-driving lab-human partnership," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Nathan J. Szymanski & Pragnay Nevatia & Christopher J. Bartel & Yan Zeng & Gerbrand Ceder, 2023. "Autonomous and dynamic precursor selection for solid-state materials synthesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Ana Laura Dias & Latimah Bustillo & Tiago Rodrigues, 2023. "Limitations of representation learning in small molecule property prediction," Nature Communications, Nature, vol. 14(1), pages 1-2, December.
    9. Artem I. Leonov & Alexander J. S. Hammer & Slawomir Lach & S. Hessam M. Mehr & Dario Caramelli & Davide Angelone & Aamir Khan & Steven O’Sullivan & Matthew Craven & Liam Wilbraham & Leroy Cronin, 2024. "An integrated self-optimizing programmable chemical synthesis and reaction engine," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    13. Zhenxing Wang & Yunjun Yu & Kallol Roy & Cheng Gao & Lei Huang, 2023. "The Application of Machine Learning: Controlling the Preparation of Environmental Materials and Carbon Neutrality," IJERPH, MDPI, vol. 20(3), pages 1-4, January.
    14. Jiaru Bai & Sebastian Mosbach & Connor J. Taylor & Dogancan Karan & Kok Foong Lee & Simon D. Rihm & Jethro Akroyd & Alexei A. Lapkin & Markus Kraft, 2024. "A dynamic knowledge graph approach to distributed self-driving laboratories," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:590:y:2021:i:7844:d:10.1038_s41586-021-03213-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.