IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35853-1.html
   My bibliography  Save this article

The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators

Author

Listed:
  • Lisa-Marie Appel

    (Medical University of Vienna
    Medical University of Vienna
    Medical University of Vienna, Max Perutz Labs, Vienna Biocenter)

  • Vedran Franke

    (Max Delbrück Center)

  • Johannes Benedum

    (Medical University of Vienna
    Medical University of Vienna
    Medical University of Vienna, Max Perutz Labs, Vienna Biocenter
    a Doctoral School of the University of Vienna and Medical University of Vienna)

  • Irina Grishkovskaya

    (Max Perutz Labs, University of Vienna, Vienna Biocenter)

  • Xué Strobl

    (Medical University of Vienna, Max Perutz Labs, Vienna Biocenter
    a Doctoral School of the University of Vienna and Medical University of Vienna)

  • Anton Polyansky

    (Max Perutz Labs, University of Vienna, Vienna Biocenter)

  • Gregor Ammann

    (Goethe University Frankfurt)

  • Sebastian Platzer

    (Medical University of Vienna, Max Perutz Labs, Vienna Biocenter)

  • Andrea Neudolt

    (Medical University of Vienna, Max Perutz Labs, Vienna Biocenter)

  • Anna Wunder

    (Medical University of Vienna, Max Perutz Labs, Vienna Biocenter)

  • Lena Walch

    (Medical University of Vienna, Max Perutz Labs, Vienna Biocenter)

  • Stefanie Kaiser

    (Goethe University Frankfurt)

  • Bojan Zagrovic

    (Max Perutz Labs, University of Vienna, Vienna Biocenter)

  • Kristina Djinovic-Carugo

    (Max Perutz Labs, University of Vienna, Vienna Biocenter
    University of Ljubljana
    European Molecular Biology Laboratory (EMBL) Grenoble)

  • Altuna Akalin

    (Max Delbrück Center)

  • Dea Slade

    (Medical University of Vienna
    Medical University of Vienna
    Medical University of Vienna, Max Perutz Labs, Vienna Biocenter)

Abstract

The heptad repeats of the C-terminal domain (CTD) of RNA polymerase II (Pol II) are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulators as well as RNA capping, splicing and 3’end processing factors. The SPOC domain of PHF3 was recently identified as a CTD reader domain specifically binding to phosphorylated serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP (also known as SPEN) and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP SPOC in complex with CTD and identify the molecular determinants for its specific binding to phosphorylated serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with writers and readers of m6A, the most abundant RNA modification. RBM15 positively regulates m6A levels and mRNA stability in a SPOC-dependent manner, while SHARP SPOC is essential for its localization to inactive X-chromosomes. Our findings suggest that the SPOC domain is a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes.

Suggested Citation

  • Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35853-1
    DOI: 10.1038/s41467-023-35853-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35853-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35853-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deepak P. Patil & Chun-Kan Chen & Brian F. Pickering & Amy Chow & Constanza Jackson & Mitchell Guttman & Samie R. Jaffrey, 2016. "m6A RNA methylation promotes XIST-mediated transcriptional repression," Nature, Nature, vol. 537(7620), pages 369-373, September.
    2. Lisa-Marie Appel & Vedran Franke & Melania Bruno & Irina Grishkovskaya & Aiste Kasiliauskaite & Tanja Kaufmann & Ursula E. Schoeberl & Martin G. Puchinger & Sebastian Kostrhon & Carmen Ebenwaldner & M, 2021. "PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    3. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    4. Anton Meinhart & Patrick Cramer, 2004. "Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors," Nature, Nature, vol. 430(6996), pages 223-226, July.
    5. Ansgar Zoch & Tania Auchynnikava & Rebecca V. Berrens & Yuka Kabayama & Theresa Schöpp & Madeleine Heep & Lina Vasiliauskaitė & Yuvia A. Pérez-Rico & Atlanta G. Cook & Alena Shkumatava & Juri Rappsilb, 2020. "SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation," Nature, Nature, vol. 584(7822), pages 635-639, August.
    6. Alan C. M. Cheung & Patrick Cramer, 2011. "Structural basis of RNA polymerase II backtracking, arrest and reactivation," Nature, Nature, vol. 471(7337), pages 249-253, March.
    7. Colleen A. McHugh & Chun-Kan Chen & Amy Chow & Christine F. Surka & Christina Tran & Patrick McDonel & Amy Pandya-Jones & Mario Blanco & Christina Burghard & Annie Moradian & Michael J. Sweredoski & A, 2015. "The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3," Nature, Nature, vol. 521(7551), pages 232-236, May.
    8. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    9. François Dossin & Inês Pinheiro & Jan J. Żylicz & Julia Roensch & Samuel Collombet & Agnès Le Saux & Tomasz Chelmicki & Mikaël Attia & Varun Kapoor & Ye Zhan & Florent Dingli & Damarys Loew & Thomas M, 2020. "SPEN integrates transcriptional and epigenetic control of X-inactivation," Nature, Nature, vol. 578(7795), pages 455-460, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Benedum & Vedran Franke & Lisa-Marie Appel & Lena Walch & Melania Bruno & Rebecca Schneeweiss & Juliane Gruber & Helena Oberndorfer & Emma Frank & Xué Strobl & Anton Polyansky & Bojan Zagrovi, 2023. "The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa-Marie Appel & Vedran Franke & Melania Bruno & Irina Grishkovskaya & Aiste Kasiliauskaite & Tanja Kaufmann & Ursula E. Schoeberl & Martin G. Puchinger & Sebastian Kostrhon & Carmen Ebenwaldner & M, 2021. "PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    2. Simona Pilotto & Michal Sýkora & Gwenny Cackett & Christopher Dulson & Finn Werner, 2024. "Structure of the recombinant RNA polymerase from African Swine Fever Virus," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    7. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Mindaugas Margelevičius, 2024. "GTalign: spatial index-driven protein structure alignment, superposition, and search," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35853-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.